Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jan 22 2018 10:19:20
%S 1,1,1,1,1,4,2,2,1,10,22,22,18,13,12,1,20,112,232,382,348,456,390,420,
%T 334,286,1,35,392,1744,4474,8435,12732,17337,21158,27853,33940,41230,
%U 45048,50752,41826,33592,1,56,1092,9220,40414,123704,276324,550932,917884
%N Irregular triangle read by rows: row n gives numbers of maximal chains of lengths n-1, n, n+1, ... in the Tamari lattice T_n.
%C Nelson (2017) gives first nine columns of the transposed triangle.
%H Alois P. Heinz, <a href="/A282698/b282698.txt">Rows n = 1..14, flattened</a>
%H Luke Nelson, <a href="https://doi.org/10.1016/j.disc.2016.11.030">A recursion on maximal chains in the Tamari lattices</a>, Discrete Mathematics 340.4 (2017): 661-677.
%H Luke Nelson, <a href="https://arxiv.org/abs/1709.02987">A recursion on maximal chains in the Tamari lattices</a>, arXiv:1709.02987 [math.CO], (2017)
%e Triangle begins:
%e 1;
%e 1;
%e 1, 1;
%e 1, 4, 2, 2;
%e 1, 10, 22, 22, 18, 13, 12;
%e 1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286;
%e ...
%e The transposed triangle, as given by Nelson, begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 4, 10, 20, 35, 56, 84, ...
%e 2, 22, 112, 392, 1092, 2604, ...
%e 2, 22, 232, 1744, 9220, 37444, ...
%e 18, 382, 4474, 40414, 280214, ...
%e 13, 348, 8435, 123704, 1321879, ...
%e 12, 456, 12732, 276324, 4578596, ...
%e 390, 17337, 550932, 12512827, ...
%e 420, 21158, 917884, 29499764, ...
%e 334, 27853, 1510834, 62132126, ...
%e 286, 33940, 2166460, 120837274, ...
%e 41230, 3370312, 221484557, ...
%e 45048, 4810150, 393364848, ...
%e 50752, 7264302, 666955139, ...
%e 41826, 10435954, 1134705692, ...
%e 33592, 15227802, 1933708535, ...
%e ...
%p s:= proc(n) s(n):=`if`(n=0, [], [s(n-1), []]) end:
%p f:= l-> l=[] or l[1]=[] and f(l[2]):
%p v:= proc(l) v(l):=`if`(f(l), [], [`if`(l[1]<>[],
%p [l[1][1], [l[1][2], l[2]]], [][]),
%p seq([w, l[2]], w=v(l[1])), seq([l[1], w], w=v(l[2]))])
%p end:
%p p:= proc(l) p(l):=`if`(f(l), 1, add(expand(x*p(w)), w=v(l))) end:
%p T:= n-> (h-> seq(coeff(h, x, i), i=ldegree(h)..degree(h)))(p(s(n))):
%p seq(T(n), n=1..8); # _Alois P. Heinz_, Jan 02 2018
%Y Row sums give A027686.
%Y Right border gives A003121(n-1).
%K nonn,tabf
%O 1,6
%A _N. J. A. Sloane_, Feb 25 2017
%E More terms from _Alois P. Heinz_, Jan 02 2018