login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328297
Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (x,y,z) with x=k, remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
6
1, 2, 1, 5, 6, 1, 16, 26, 14, 1, 58, 112, 93, 30, 1, 228, 489, 522, 288, 62, 1, 945, 2182, 2737, 2040, 825, 126, 1, 4072, 9934, 13934, 12642, 7210, 2254, 254, 1, 18078, 46016, 70058, 72994, 52086, 23878, 5969, 510, 1, 82172, 216322, 350648, 404788, 338520, 198795, 75570, 15468, 1022, 1
OFFSET
0,2
LINKS
Wikipedia, Lattice path
EXAMPLE
Triangle T(n,k) begins:
1;
2, 1;
5, 6, 1;
16, 26, 14, 1;
58, 112, 93, 30, 1;
228, 489, 522, 288, 62, 1;
945, 2182, 2737, 2040, 825, 126, 1;
4072, 9934, 13934, 12642, 7210, 2254, 254, 1;
...
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
end:
T:= (n, k)-> add(b(sort([k, j, n-k-j])), j=0..n-k):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
T[n_, k_] := Sum[b[Sort[{k, j, n - k - j}]], {j, 0, n - k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 12 2020, after Maple *)
CROSSREFS
Column k=0 gives A328296.
Main diagonal gives A000012.
T(n,n-1) gives A000918(n+1).
T(2n,n) gives A328427.
Row sums give A328295.
Sequence in context: A179455 A039810 A378588 * A124575 A178121 A302595
KEYWORD
nonn,tabl,walk
AUTHOR
Alois P. Heinz, Oct 11 2019
STATUS
approved