login
A328297
Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (x,y,z) with x=k, remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
6
1, 2, 1, 5, 6, 1, 16, 26, 14, 1, 58, 112, 93, 30, 1, 228, 489, 522, 288, 62, 1, 945, 2182, 2737, 2040, 825, 126, 1, 4072, 9934, 13934, 12642, 7210, 2254, 254, 1, 18078, 46016, 70058, 72994, 52086, 23878, 5969, 510, 1, 82172, 216322, 350648, 404788, 338520, 198795, 75570, 15468, 1022, 1
OFFSET
0,2
LINKS
Wikipedia, Lattice path
EXAMPLE
Triangle T(n,k) begins:
1;
2, 1;
5, 6, 1;
16, 26, 14, 1;
58, 112, 93, 30, 1;
228, 489, 522, 288, 62, 1;
945, 2182, 2737, 2040, 825, 126, 1;
4072, 9934, 13934, 12642, 7210, 2254, 254, 1;
...
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
end:
T:= (n, k)-> add(b(sort([k, j, n-k-j])), j=0..n-k):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
T[n_, k_] := Sum[b[Sort[{k, j, n - k - j}]], {j, 0, n - k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 12 2020, after Maple *)
CROSSREFS
Column k=0 gives A328296.
Main diagonal gives A000012.
T(n,n-1) gives A000918(n+1).
T(2n,n) gives A328427.
Row sums give A328295.
Sequence in context: A217204 A179455 A039810 * A124575 A178121 A302595
KEYWORD
nonn,tabl,walk
AUTHOR
Alois P. Heinz, Oct 11 2019
STATUS
approved