login
A378438
Dirichlet inverse of A378436, where A378436 is the inverse Möbius transform of the number of partitions of n into distinct divisors of n.
3
1, -2, -2, 1, -2, 3, -2, 0, 1, 4, -2, -1, -2, 4, 4, 0, -2, -1, -2, -3, 4, 4, -2, -2, 1, 4, 0, -3, -2, -8, -2, 0, 4, 4, 4, -2, -2, 4, 4, 0, -2, -7, -2, -2, -2, 4, -2, 0, 1, -2, 4, -2, -2, 0, 4, 1, 4, 4, -2, -21, -2, 4, -2, 0, 4, -7, -2, -2, 4, -8, -2, -10, -2, 4, -2, -2, 4, -6, -2, 0, 0, 4, -2, -15, 4, 4, 4, -1, -2
OFFSET
1,2
COMMENTS
Equivalently, Möbius transform of the Dirichlet inverse of A033630.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A378436(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A378437(d).
PROG
(PARI)
A033630(n) = if(!n, 1, my(p=1); fordiv(n, d, p *= (1 + 'x^d)); polcoeff(p, n));
A378436(n) = sumdiv(n, d, A033630(d));
memoA378438 = Map();
A378438(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378438, n, &v), v, v = -sumdiv(n, d, if(d<n, A378436(n/d)*A378438(d), 0)); mapput(memoA378438, n, v); (v)));
CROSSREFS
Dirichlet inverse of A378436.
Möbius transform of A378437.
Sequence in context: A365393 A366286 A378453 * A072781 A340094 A236566
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 26 2024
STATUS
approved