login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378453
Dirichlet inverse of A018892, where A018892(n) = (tau(n^2)+1)/2.
2
1, -2, -2, 1, -2, 3, -2, 0, 1, 3, -2, 0, -2, 3, 3, 0, -2, 0, -2, 0, 3, 3, -2, -1, 1, 3, 0, 0, -2, -2, -2, 0, 3, 3, 3, -2, -2, 3, 3, -1, -2, -2, -2, 0, 0, 3, -2, 0, 1, 0, 3, 0, -2, -1, 3, -1, 3, 3, -2, -3, -2, 3, 0, 0, 3, -2, -2, 0, 3, -2, -2, 0, -2, 3, 0, 0, 3, -2, -2, 0, 0, 3, -2, -3, 3, 3, 3, -1, -2, -3, 3, 0, 3, 3, 3
OFFSET
1,2
COMMENTS
Möbius transform of A378452.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A018892(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A378452(d).
PROG
(PARI)
A018892(n) = ((numdiv(n^2)+1)/2);
memoA378453 = Map();
A378453(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378453, n, &v), v, v = -sumdiv(n, d, if(d<n, A018892(n/d)*A378453(d), 0)); mapput(memoA378453, n, v); (v)));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 29 2024
STATUS
approved