login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378453
Dirichlet inverse of A018892, where A018892(n) = (tau(n^2)+1)/2.
2
1, -2, -2, 1, -2, 3, -2, 0, 1, 3, -2, 0, -2, 3, 3, 0, -2, 0, -2, 0, 3, 3, -2, -1, 1, 3, 0, 0, -2, -2, -2, 0, 3, 3, 3, -2, -2, 3, 3, -1, -2, -2, -2, 0, 0, 3, -2, 0, 1, 0, 3, 0, -2, -1, 3, -1, 3, 3, -2, -3, -2, 3, 0, 0, 3, -2, -2, 0, 3, -2, -2, 0, -2, 3, 0, 0, 3, -2, -2, 0, 0, 3, -2, -3, 3, 3, 3, -1, -2, -3, 3, 0, 3, 3, 3
OFFSET
1,2
COMMENTS
Möbius transform of A378452.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A018892(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A378452(d).
PROG
(PARI)
A018892(n) = ((numdiv(n^2)+1)/2);
memoA378453 = Map();
A378453(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378453, n, &v), v, v = -sumdiv(n, d, if(d<n, A018892(n/d)*A378453(d), 0)); mapput(memoA378453, n, v); (v)));
CROSSREFS
KEYWORD
sign,new
AUTHOR
Antti Karttunen, Nov 29 2024
STATUS
approved