login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378166
Terms c = A076467(k) such that the distinct prime factors of b = A076467(k-1) and of c-b are subsets of the prime factors of c, i.e., rad(c)/rad((c-b)*b*c) = 1.
2
16, 64, 2744, 474552, 157529610000, 407165596771032, 1491025241529616, 173903694695292024, 661905356066769705912, 14918256451377811247508792, 19801061641727872277815512, 2718924063971620383558231552
OFFSET
1,1
COMMENTS
a(13) > 5*10^27.
EXAMPLE
Pairs b,c of consecutive terms of A076467
c-b b c = a(n)
8, 8, 16,
32, 32, 64,
343, 2401, 2744,
17576, 456976, 474552,
65610000, 157464000000, 157529610000,
11329982936, 407154266788096, 407165596771032,
26102469128, 1490999139060488, 1491025241529616,
315404039943, 173903379291252081, 173903694695292024,
152838610998696, 661905203228158707216, 661905356066769705912.
PROG
(PARI) \\ Uses M. F. Hasler's A076467_vec from A076467
rad(x) = vecprod(factor(x)[, 1]);
a378166_7(upto) = {my(W=A076467_vec(upto)); for(k=2, #W, my(d=W[k]-W[k-1], q=rad(W[k])/rad(W[k]*W[k-1]*d)); if(q==1, print([d, W[k-1], W[k]])))};
\\ Alternative program not using rad, more efficient
a378166_7(upto) = {my(W=A076467_vec(upto)); for(k=2, #W, my(C=Set(factor(W[k])[, 1]), d=W[k]-W[k-1]); if(#setminus(Set(factor(d)[, 1]), C)>0, , if(#setminus(Set(factor(W[k-1])[, 1]), C)==0, print([d, W[k-1], W[k]]))))};
a378166_7(10^18)
CROSSREFS
A378167 gives the corresponding values of c-b.
Sequence in context: A327496 A330824 A189806 * A222748 A283271 A031446
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Nov 20 2024
STATUS
approved