OFFSET
1,5
COMMENTS
The number of monomorphisms (i.e., injective homomorphisms) S_k -> S_n is thus |Aut(S_k)|*T(n,k). Note that |Aut(S_k)| = 1 for k = 2, 1440 for k = 6 and k! otherwise.
T(n,k) is related to the number of homomorphisms S_k -> S_n:
k | trivial kernel | kernel S_k (k>=2) | kernel A_k (k>=3) | kernel V (k=4) | total number
-----------+----------------+-------------------+-------------------+----------------+-------------------------
1 | 1 | - | - | - | 1
-----------+----------------+-------------------+-------------------+----------------+-------------------------
2 | b(n)-1 | 1 | - | - | b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
4 | 24*T(n,4) | 1 | b(n)-1 | 6*T(n,3) | 24*T(n,4)+6*T(n,3)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
6 | 1440*T(n,6) | 1 | b(n)-1 | - | 1440*T(n,6)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
3, 5, >=7 | k!*T(n,k) | 1 | b(n)-1 | - | k!*T(n,k)+b(n)
Here A_n is the n-th alternating group, V = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is the Klein-four group in S_4, b = A000085, and T(n,k) = 0 for k > n.
In particular, the number of homomorphisms S_n -> S_n is 1 for n = 1, 2 for n = 2, 58 for n = 4, 1440 + b(6) = 1516 for n = 6, and n! + b(n) otherwise.
LINKS
Mathematics Stack Exchange, Subgroups in GAP
FORMULA
T(n,2) = A001189(n).
EXAMPLE
Table reads
1
1, 1
1, 3, 1
1, 9, 4, 1
1, 25, 20, 5, 1
1, 75, 160, 60, 12, 1
1, 231, 910, 560, 84, 7, 1
1, 763, 5936, 5740, 560, 56, 8, 1
1, 2619, 53424, 58716, 3276, 336, 72, 9, 1
1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1
PROG
(GAP) A378163 := function(n, k)
local S;
S := SymmetricGroup(n);
return Sum(IsomorphicSubgroups(S, SymmetricGroup(k)), x->Index(S, Normalizer(S, Image(x))));
end; # program given in the Math Stack Exchange link
(GAP) A378163_row_n := function(n)
local L, C, G, N, k;
N := ListWithIdenticalEntries( n, 0 );
L := ConjugacyClassesSubgroups( SymmetricGroup(n) );
for C in L do
G := Representative(C);
for k in [1..n] do
if not IsomorphismGroups( G, SymmetricGroup(k) ) = fail then
N[k] := N[k]+Size(C);
fi;
od;
od;
return N;
end;
CROSSREFS
KEYWORD
AUTHOR
Jianing Song, Nov 18 2024
STATUS
approved