login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378163
Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k, where S_n is the n-th symmetric group.
5
1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 160, 60, 12, 1, 1, 231, 910, 560, 84, 7, 1, 1, 763, 5936, 5740, 560, 56, 8, 1, 1, 2619, 53424, 58716, 3276, 336, 72, 9, 1, 1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1, 1, 35695, 3304620, 8337120, 1105104, 39732, 3300, 660, 110, 11, 1, 1, 140151, 35023120, 133212420, 16571808, 1400784, 20592, 4950, 880, 132, 12, 1, 1, 568503, 322852816, 1769490580, 176344740, 16253952, 130416, 33462, 7150, 1144, 156, 13, 1
OFFSET
1,5
COMMENTS
The number of monomorphisms (i.e., injective homomorphisms) S_k -> S_n is thus |Aut(S_k)|*T(n,k). Note that |Aut(S_k)| = 1 for k = 2, 1440 for k = 6 and k! otherwise.
T(n,k) is related to the number of homomorphisms S_k -> S_n:
k | trivial kernel | kernel S_k (k>=2) | kernel A_k (k>=3) | kernel V (k=4) | total number
-----------+----------------+-------------------+-------------------+----------------+-------------------------
1 | 1 | - | - | - | 1
-----------+----------------+-------------------+-------------------+----------------+-------------------------
2 | b(n)-1 | 1 | - | - | b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
4 | 24*T(n,4) | 1 | b(n)-1 | 6*T(n,3) | 24*T(n,4)+6*T(n,3)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
6 | 1440*T(n,6) | 1 | b(n)-1 | - | 1440*T(n,6)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
3, 5, >=7 | k!*T(n,k) | 1 | b(n)-1 | - | k!*T(n,k)+b(n)
Here A_n is the n-th alternating group, V = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is the Klein-four group in S_4, b = A000085, and T(n,k) = 0 for k > n.
In particular, the number of homomorphisms S_n -> S_n is 1 for n = 1, 2 for n = 2, 58 for n = 4, 1440 + b(6) = 1516 for n = 6, and n! + b(n) otherwise.
LINKS
Mathematics Stack Exchange, Subgroups in GAP
FORMULA
T(n,2) = A001189(n).
EXAMPLE
Table reads
1
1, 1
1, 3, 1
1, 9, 4, 1
1, 25, 20, 5, 1
1, 75, 160, 60, 12, 1
1, 231, 910, 560, 84, 7, 1
1, 763, 5936, 5740, 560, 56, 8, 1
1, 2619, 53424, 58716, 3276, 336, 72, 9, 1
1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1
PROG
(GAP) A378163 := function(n, k)
local S;
S := SymmetricGroup(n);
return Sum(IsomorphicSubgroups(S, SymmetricGroup(k)), x->Index(S, Normalizer(S, Image(x))));
end; # program given in the Math Stack Exchange link
(GAP) A378163_row_n := function(n)
local L, C, G, N, k;
N := ListWithIdenticalEntries( n, 0 );
L := ConjugacyClassesSubgroups( SymmetricGroup(n) );
for C in L do
G := Representative(C);
for k in [1..n] do
if not IsomorphismGroups( G, SymmetricGroup(k) ) = fail then
N[k] := N[k]+Size(C);
fi;
od;
od;
return N;
end;
CROSSREFS
KEYWORD
nonn,tabl,hard,changed
AUTHOR
Jianing Song, Nov 18 2024
STATUS
approved