OFFSET
1,24
COMMENTS
Integer-sided isosceles trapezoids with integer area have an integer height. Proof: In an isosceles trapezoid with integer sides and parallel sides p, q with p = q + 2*x, the denominator of x must not be greater than 2. Let us consider the right-angled triangle x, h, d: Assuming that h is not an integer, then x cannot be an integer either, since x = sqrt(d^2 - h^2). Therefore x = (2*s - 1)/2 where s is a positive integer. Since h = 2*n/(p + q) is rational and h = sqrt(d^2 - x^2), it follows that h = (2*t - 1)/2 where t is a positive integer and d^2 = s^2 - s + t^2 - t + 1/2. d is therefore not an integer. It follows that isosceles trapezoids with integer sides and area also have an integer height.
LINKS
Felix Huber, Table of n, a(n) for n = 1..10000
Felix Huber, Integer-sided isosceles trapezoids with area n
Eric Weisstein's World of Mathematics, Isosceles Trapezoid
FORMULA
a(p) = 0 for prime p.
EXAMPLE
a(54) = 2 because there are 2 distinct integer-sided isosceles trapezoids [p, d, q, d, h] (p and q are parallel, height h) with area 54: [17, 10, 1, 10, 6], [22, 5, 14, 5, 3].
See also linked Maple program "Integer-sided isosceles trapezoids with area n".
MAPLE
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Huber, Dec 02 2024
STATUS
approved