|
|
A374594
|
|
Areas of trapezoids with integer sides and height whose area equals their perimeter.
|
|
1
|
|
|
16, 18, 20, 20, 24, 30, 30, 36, 48, 70, 90, 180, 180, 420, 528, 870, 1170, 2610
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A trapezoid is a quadrilateral with at least one pair of parallel sides.
Conjecture: in this sequence are only three terms which belong to trapezoids with exactly one pair of parallel sides: a(3) = 20, a(5) = 24, a(7) = 30.
|
|
LINKS
|
Eric Weisstein's World of Mathematics,Trapezoid.
|
|
EXAMPLE
|
See attached illustration of the terms a(1) to a(10).
|
|
MAPLE
|
with(NumberTheory):
local K, L, S, T, i, a, c, x, y, h, b, d;
L := Divisors(k);
S:=[];
T:=[];
K:=[];
for i to numelems(L) do
for c to L[i] do
a:=2*L[i]-c;
h:=k/L[i];
x:=0;
while x^2<(k-a-c)^2-h^2 do
if issqr(x^2+h^2) then
d:=sqrt(x^2+h^2);
b:=k-a-c-d;
y:=a-c-x;
if h^2+y^2=b^2 then
S:=[a, b, c, d];
S:=sort(S);
if member(S, T)=false then
T:=[op(T), S];
K:=[op(K), k];
fi;
fi;
fi;
x:=x+1;
od;
od;
od;
if numelems(K)>0 then
return op(K)
fi;
end proc;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|