login
A377561
Numbers k such that 24k - 1 and 24k + 1 are a pair of twin primes in A115591.
1
8, 13, 62, 78, 113, 125, 132, 157, 207, 230, 315, 337, 428, 473, 493, 570, 652, 763, 788, 902, 928, 932, 987, 1075, 1113, 1135, 1147, 1158, 1225, 1245, 1322, 1327, 1387, 1432, 1483, 1602, 1607, 1672, 1702, 1753, 1767, 1845, 1880, 1973, 1992, 2083, 2155, 2212, 2220, 2233
OFFSET
1,1
COMMENTS
Numbers k such that 24k - 1 is in A367318. Note that all terms there are congruent to 23 modulo 24.
LINKS
FORMULA
a(n) = (A367318(n) + 1)/24.
EXAMPLE
8 is a term since the multiplicative order of 2 modulo 24*8 - 1 = 191 is 95, and the multiplicative order of 2 modulo 24*8 + 1 = 193 is 96.
PROG
(PARI) isA377561(k) = znorder(Mod(2, 24*k-1))==12*k-1 && znorder(Mod(2, 24*k+1))==12*k \\ No need to check primality as the multiplicative order of 2 modulo a composite odd number m cannot be equal to (m-1)/2; see my comment in A001567
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 01 2024
STATUS
approved