login
A376573
Numbers that are not squares of triangular numbers. Complement of A000537.
3
2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
OFFSET
1,1
COMMENTS
Numbers that are not the sum of the first k cubes.
LINKS
Eric Weisstein's World of Mathematics, Triangular Number
FORMULA
a(n) = n+m if 4n>m*(m-1)*(m^2+3*m+4) and a(n) = n+m-1 otherwise where m = floor((4n)^(1/4)).
MATHEMATICA
A376573[n_] := With[{m = Floor[(4*n)^(1/4)]}, n + m - Boole[4*n <= m*(m - 1)*(m*(m + 3) + 4)]];
Array[A376573, 96] (* or *)
Complement[Range[Last[#]], #] & [Accumulate[Range[4]^3]] (* Paolo Xausa, Oct 04 2024 *)
PROG
(Python)
from sympy import integer_nthroot
def A376573(n): return n+(m:=integer_nthroot(k:=n<<2, 4)[0])-(k<=m*(m-1)*(m**2+3*m+4))
(PARI) isok(k) = !issquare(k) || (issquare(k) && !ispolygonal(sqrtint(k), 3)); \\ Michel Marcus, Oct 02 2024
CROSSREFS
Sequence in context: A265556 A358123 A004728 * A072886 A031980 A183221
KEYWORD
nonn,easy
AUTHOR
Chai Wah Wu, Oct 02 2024
STATUS
approved