OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k+1)^(n-3*k-1) * binomial(n-2*k-1,k)/(n-3*k)!.
E.g.f.: exp( -LambertW(-x/(1-x^3)) ).
From Vaclav Kotesovec, Oct 10 2024: (Start)
E.g.f.: -LambertW(-x/(1-x^3))*(1-x^3)/x.
a(n) ~ sqrt(2^(2/3) * 3^(5/3) / ((2*(9 + sqrt(81 + 12*exp(3))))^(1/3) - 2*exp(1)*(3/(9 + sqrt(81 + 12*exp(3))))^(1/3)) - 2*exp(1)) * 2^(2*n/3) * 3^(4*n/3) * ((9 + sqrt(81 + 12*exp(3)))^(1/3) / (2^(1/3) * (3*(9 + sqrt(81 + 12*exp(3))))^(2/3) - 6*exp(1)))^n * n^(n-1) / exp(n - 1/2). (End)
PROG
(PARI) a(n) = n!*sum(k=0, n\3, (n-3*k+1)^(n-3*k-1)*binomial(n-2*k-1, k)/(n-3*k)!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x^3)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 28 2024
STATUS
approved