login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376576
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/(1 - x^3)).
1
1, 1, 3, 16, 149, 1656, 22567, 372184, 7141689, 156630448, 3871782251, 106504501104, 3227742350197, 106879926110296, 3839600650843791, 148746681984864856, 6181806007303273073, 274355581868776940256, 12951023558423725477459, 647956009961120527442272
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k+1)^(n-3*k-1) * binomial(n-2*k-1,k)/(n-3*k)!.
E.g.f.: exp( -LambertW(-x/(1-x^3)) ).
From Vaclav Kotesovec, Oct 10 2024: (Start)
E.g.f.: -LambertW(-x/(1-x^3))*(1-x^3)/x.
a(n) ~ sqrt(2^(2/3) * 3^(5/3) / ((2*(9 + sqrt(81 + 12*exp(3))))^(1/3) - 2*exp(1)*(3/(9 + sqrt(81 + 12*exp(3))))^(1/3)) - 2*exp(1)) * 2^(2*n/3) * 3^(4*n/3) * ((9 + sqrt(81 + 12*exp(3)))^(1/3) / (2^(1/3) * (3*(9 + sqrt(81 + 12*exp(3))))^(2/3) - 6*exp(1)))^n * n^(n-1) / exp(n - 1/2). (End)
PROG
(PARI) a(n) = n!*sum(k=0, n\3, (n-3*k+1)^(n-3*k-1)*binomial(n-2*k-1, k)/(n-3*k)!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x^3)))))
CROSSREFS
Cf. A293493.
Sequence in context: A264660 A376578 A362655 * A368451 A214933 A376565
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 28 2024
STATUS
approved