OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(n-2*k-1) * Stirling2(k,n-2*k)/k!.
a(n) ~ sqrt((s + (2-r)*r^2*s^2) / (1 + r^2*s)) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.61449673663401194313060646272783564740280675129432866295196... and s = 2.0142668139632529702005737408942958028763507472726001354659... are real roots of the system of equations exp((-1 + exp(r^2*s))*r) = s, exp(r^2*s)*s*r^3 = 1. - Vaclav Kotesovec, Aug 31 2024
MATHEMATICA
Table[n! * Sum[(k+1)^(n-2*k-1) * StirlingS2[k, n-2*k]/k!, {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 31 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (k+1)^(n-2*k-1)*stirling(k, n-2*k, 2)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 30 2024
STATUS
approved