OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (n-k)! * |Stirling1(k,n-2*k)|/( k! * (k+1)! ).
a(n) ~ sqrt(s*(-1 + s*(1 + r^2 + r^2*(-1 + 2*r)*s))/(1 + 2*r*s)) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.555108855597239653157700556001479889170962... and s = 1.679468515326835651547953595104045902497719... are real roots of the system of equations 1 + r*log(1 - r^2*s) = 1/s, r^3*s^2 = 1 - r^2*s. - Vaclav Kotesovec, Aug 31 2024
MATHEMATICA
Table[n!*Sum[(n-k)!*Abs[StirlingS1[k, n - 2*k]]/(k!*(k + 1)!), {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 31 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (n-k)!*abs(stirling(k, n-2*k, 1))/(k!*(k+1)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 30 2024
STATUS
approved