login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies A(x) = exp(x * (exp(x^2*A(x)) - 1)).
1

%I #10 Aug 31 2024 06:19:04

%S 1,0,0,6,0,60,1080,840,80640,982800,5292000,249812640,2854051200,

%T 46711304640,1595483809920,22132648137600,649972279756800,

%U 19151306772998400,377272414943424000,14076577060273728000,407012458114918656000,11429334092933569612800

%N E.g.f. satisfies A(x) = exp(x * (exp(x^2*A(x)) - 1)).

%F a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(n-2*k-1) * Stirling2(k,n-2*k)/k!.

%F a(n) ~ sqrt((s + (2-r)*r^2*s^2) / (1 + r^2*s)) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.61449673663401194313060646272783564740280675129432866295196... and s = 2.0142668139632529702005737408942958028763507472726001354659... are real roots of the system of equations exp((-1 + exp(r^2*s))*r) = s, exp(r^2*s)*s*r^3 = 1. - _Vaclav Kotesovec_, Aug 31 2024

%t Table[n! * Sum[(k+1)^(n-2*k-1) * StirlingS2[k,n-2*k]/k!, {k,0,Floor[n/2]}], {n,0,20}] (* _Vaclav Kotesovec_, Aug 31 2024 *)

%o (PARI) a(n) = n!*sum(k=0, n\2, (k+1)^(n-2*k-1)*stirling(k, n-2*k, 2)/k!);

%Y Cf. A349560, A375830.

%K nonn

%O 0,4

%A _Seiichi Manyama_, Aug 30 2024