login
A375188
Number of non-unitary square divisors of n!.
3
0, 0, 0, 0, 1, 1, 2, 2, 6, 10, 22, 22, 32, 32, 68, 92, 124, 124, 172, 172, 284, 296, 596, 596, 848, 1136, 2288, 2680, 4352, 4352, 5344, 5344, 6128, 6140, 13040, 16304, 19424, 19424, 38864, 43184, 47984, 47984, 63992, 63992, 100784, 133024, 278656, 278656, 331520
OFFSET
0,7
LINKS
FORMULA
a(n) = A056626(n!).
MATHEMATICA
f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[0] = a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - Times @@ f2 @@@ fct; Array[a, 60, 0]
PROG
(PARI) a(n) = {my(e = factor(n!)[, 2]); vecprod(apply(x -> x\2 + 1, e)) - vecprod(apply(x -> 1 << (1 - x%2), e)); }
(Python)
from math import prod
from collections import Counter
from sympy import factorint
def A375188(n):
f = sum((Counter(factorint(m)) for m in range(2, n+1)), start=Counter()).values()
return prod((e>>1)+1 for e in f)-(1<<sum(e&1^1 for e in f)) # Chai Wah Wu, Aug 04 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 03 2024
STATUS
approved