This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019310 Number of words of length n (n >= 1) over a two-letter alphabet having a minimal period of size n-1. 0
 0, 2, 2, 6, 10, 22, 38, 82, 154, 318, 614, 1250, 2462, 4962, 9842, 19766, 39378, 78910, 157502, 315322, 630030, 1260674, 2520098, 5041446, 10080430, 20163322, 40321682, 80648326, 161286810, 322583462, 645147158, 1290314082, 2580588786, 5161216950 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES H. Harborth, Endliche 0-1-Folgen mit gleichen Teilblöcken, J. für Reine Angewandte Math. 271 (1974), 139-154. LINKS FORMULA a(n) = 2a(n-1) + (-1)^n a(ceiling(n/2)) for n >= 2. a(n) = a(n-1) + 2*a(n-2) if n >=4 even. a(n) = a(n-1) + 2*a(n-2) + 2*a((n-1)/2) if n>=7 == 3 (mod 4). Michael Somos, Jan 23 2014 EXAMPLE G.f. = 2*x^2 + 2*x^3 + 6*x^4 + 10*x^5 + 22*x^6 + 38*x^7 + 82*x^8 + ... PROG (PARI) a(n) = if (n==1, 0, if (n==2, 2, 2*a(n-1) + (-1)^n*a(ceil(n/2)))) \\ Michel Marcus, May 25 2013 CROSSREFS Sequence in context: A123757 A167399 A247326 * A014113 A078008 A151575 Adjacent sequences:  A019307 A019308 A019309 * A019311 A019312 A019313 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .