login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019310
Number of words of length n (n >= 1) over a two-letter alphabet having a minimal period of size n-1.
3
0, 2, 2, 6, 10, 22, 38, 82, 154, 318, 614, 1250, 2462, 4962, 9842, 19766, 39378, 78910, 157502, 315322, 630030, 1260674, 2520098, 5041446, 10080430, 20163322, 40321682, 80648326, 161286810, 322583462, 645147158, 1290314082, 2580588786, 5161216950
OFFSET
1,2
LINKS
H. Harborth, Endliche 0-1-Folgen mit gleichen Teilblöcken, Journal für Mathematik, 271 (1974) 139-154.
FORMULA
a(n) = 2*a(n-1) + (-1)^n * a(ceiling(n/2)) for n >= 3.
a(n) = a(n-1) + 2*a(n-2) if n >= 4 even. a(n) = a(n-1) + 2*a(n-2) + 2*a((n-1)/2) if n>=7 == 3 (mod 4). - Michael Somos, Jan 23 2014
EXAMPLE
G.f. = 2*x^2 + 2*x^3 + 6*x^4 + 10*x^5 + 22*x^6 + 38*x^7 + 82*x^8 + ...
a(4) = 6 because we have: {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}. These are precisely the binary words of length 4 with autocorrelation polynomial equal to 1 + z^3. - Geoffrey Critzer, Apr 13 2022
MAPLE
f:= proc(n) option remember;
2*procname(n-1)+(-1)^n*procname(ceil(n/2))
end proc:
f(1):= 0: f(2):= 2:
map(f, [$1..100]); # Robert Israel, Jul 15 2018
PROG
(PARI) a(n) = if (n==1, 0, if (n==2, 2, 2*a(n-1) + (-1)^n*a(ceil(n/2)))) \\ Michel Marcus, May 25 2013
CROSSREFS
Sequence in context: A374297 A375188 A300274 * A078008 A151575 A014113
KEYWORD
nonn
STATUS
approved