login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375085
Triangle read by rows: T(n,k) is the number of ballotlike paths ending at (n, k), with 0 <= k <= n.
2
0, 0, 1, 1, 1, 1, 2, 3, 2, 1, 5, 9, 6, 3, 1, 14, 28, 21, 10, 4, 1, 42, 90, 76, 39, 15, 5, 1, 132, 297, 276, 159, 64, 21, 6, 1, 429, 1001, 1002, 643, 288, 97, 28, 7, 1, 1430, 3432, 3641, 2555, 1281, 475, 139, 36, 8, 1, 4862, 11934, 13261, 10004, 5536, 2300, 733, 191, 45, 9, 1
OFFSET
0,7
COMMENTS
A ballotlike path is a lattice path in the 1st quadrant starting at (0, 0) and ending at (n, k) which uses the steps U = (1, 1), D = (1, -1), u = (1, 0) (for upstairs or umber) and d = (1, 0) (for downstairs or denim), subject to the conditions that the umber horizontal steps do not occur at height zero and the denim horizontal steps do not occur before the first down step. See pp. 8-10 in Lazar and Linusson.
LINKS
Alexander Lazar and Svante Linusson, Two-Row Set-Valued Tableaux: Catalan+k Combinatorics, Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum), Séminaire Lotharingien de Combinatoire 91B (2024) Article #80, 12 pp. See p. 10.
FORMULA
T(n,k) = binomial(2*n-2,n-k-1) - binomial(2*n-2,n-k-2) + binomial(n-2,n-k).
T(n,0) = A000108(n-1).
T(n,1) = A071724(n-1) for n > 0.
T(n+1,2) - T(n,2) = A026013(n-1) for n > 2.
EXAMPLE
Triangle begins:
0;
0, 1;
1, 1, 1;
2, 3, 2, 1;
5, 9, 6, 3, 1;
14, 28, 21, 10, 4, 1;
42, 90, 76, 39, 15, 5, 1;
132, 297, 276, 159, 64, 21, 6, 1;
...
MATHEMATICA
T[n_, k_]:=Binomial[2n-2, n-k-1]-Binomial[2n-2, n-k-2]+Binomial[n-2, n-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Python)
from math import isqrt
from sympy import binomial
def A375085(n):
a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
b = n-binomial(a+1, 2)
return int(binomial(c:=a-1<<1, d:=a-b-1)-binomial(c, d-1)+binomial(a-2, d+1)) if n else 0 # Chai Wah Wu, Nov 14 2024
CROSSREFS
Cf. A000108, A026013, A057427 (diagonal), A071724, A375086 (row sums).
Sequence in context: A238165 A081316 A226362 * A228549 A079893 A324646
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jul 29 2024
STATUS
approved