login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of ballotlike paths ending at (n, k), with 0 <= k <= n.
2

%I #20 Nov 15 2024 11:01:25

%S 0,0,1,1,1,1,2,3,2,1,5,9,6,3,1,14,28,21,10,4,1,42,90,76,39,15,5,1,132,

%T 297,276,159,64,21,6,1,429,1001,1002,643,288,97,28,7,1,1430,3432,3641,

%U 2555,1281,475,139,36,8,1,4862,11934,13261,10004,5536,2300,733,191,45,9,1

%N Triangle read by rows: T(n,k) is the number of ballotlike paths ending at (n, k), with 0 <= k <= n.

%C A ballotlike path is a lattice path in the 1st quadrant starting at (0, 0) and ending at (n, k) which uses the steps U = (1, 1), D = (1, -1), u = (1, 0) (for upstairs or umber) and d = (1, 0) (for downstairs or denim), subject to the conditions that the umber horizontal steps do not occur at height zero and the denim horizontal steps do not occur before the first down step. See pp. 8-10 in Lazar and Linusson.

%H Alexander Lazar and Svante Linusson, <a href="https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2024/80.html">Two-Row Set-Valued Tableaux: Catalan+k Combinatorics</a>, Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum), Séminaire Lotharingien de Combinatoire 91B (2024) Article #80, 12 pp. See p. 10.

%F T(n,k) = binomial(2*n-2,n-k-1) - binomial(2*n-2,n-k-2) + binomial(n-2,n-k).

%F T(n,0) = A000108(n-1).

%F T(n,1) = A071724(n-1) for n > 0.

%F T(n+1,2) - T(n,2) = A026013(n-1) for n > 2.

%e Triangle begins:

%e 0;

%e 0, 1;

%e 1, 1, 1;

%e 2, 3, 2, 1;

%e 5, 9, 6, 3, 1;

%e 14, 28, 21, 10, 4, 1;

%e 42, 90, 76, 39, 15, 5, 1;

%e 132, 297, 276, 159, 64, 21, 6, 1;

%e ...

%t T[n_,k_]:=Binomial[2n-2,n-k-1]-Binomial[2n-2,n-k-2]+Binomial[n-2,n-k]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

%o (Python)

%o from math import isqrt

%o from sympy import binomial

%o def A375085(n):

%o a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))

%o b = n-binomial(a+1,2)

%o return int(binomial(c:=a-1<<1,d:=a-b-1)-binomial(c,d-1)+binomial(a-2,d+1)) if n else 0 # _Chai Wah Wu_, Nov 14 2024

%Y Cf. A000108, A026013, A057427 (diagonal), A071724, A375086 (row sums).

%K nonn,tabl

%O 0,7

%A _Stefano Spezia_, Jul 29 2024