login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374729
Number of tilings using squares, dominos, and flexible trominos of a strip of length n-1 and with an n-th cell placed on top of the middle of the strip.
0
0, 1, 2, 4, 7, 12, 21, 40, 76, 139, 254, 466, 855, 1576, 2905, 5340, 9816, 18053, 33202, 61076, 112351, 206636, 380045, 699012, 1285684, 2364759, 4349502, 7999954, 14714159, 27063568, 49777681, 91555464, 168396816, 309729961, 569682082, 1047808756
OFFSET
0,3
COMMENTS
As an illustration, here are the figures for n=8 and n=9, respectively.
_ _
_____|_|_____ _______|_|_____
|_|_|_|_|_|_|_|, |_|_|_|_|_|_|_|_|.
FORMULA
a(n) = a(n-1) + 2*a(n-3) + 2*a(n-5) + 2*a(n-6) - a(n-8) - a(n-9).
a(2*n) = a(2*n-1) + a(2*n-3) + a(2*n-4) + 3*a(2*n-5) + 2*a(2*n-6) + a(2*n-7).
a(2*n) = A000073(2*n+1) + A000073(n+1)*(A000073(n+1) + 2*A000073(n)).
a(2*n+1) = a(2*n) + a(2*n-1) + a(2*n-3) + a(2*n-4) + a(2*n-5).
a(2*n+1) = A000073(2*n+2) + A000073(n+1)^2 + A000073(n+2)*(A000073(n+1) + A000073(n)).
G.f.: x*(1 + x + 2*x^2 + x^3 + x^4 - x^5 - x^6)/(1 - x - 2*x^3 - 2*x^5 -
2*x^6 + x^8 + x^9).
EXAMPLE
For n=8, here is one of a(8)=76 possible tilings with squares, dominos, and flexible trominos.
_
_____| |_____
|___|_|___|___|.
MATHEMATICA
LinearRecurrence[{1, 0, 2, 0, 2, 2, 0, -1, -1}, {0, 1, 2, 4, 7, 12, 21, 40, 76}, 40]
CROSSREFS
Cf. A000073.
Sequence in context: A005126 A054151 A018176 * A372540 A135460 A274174
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Yinuo Zhu, Jul 17 2024
STATUS
approved