login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374728
Number of n-color gap-free compositions of n.
3
1, 1, 1, 3, 7, 19, 45, 105, 239, 507, 1079, 2303, 4829, 10425, 23263, 53363, 127995, 318983, 816057, 2133241, 5640135, 14975051, 39772751, 105322879, 277547989, 727276225, 1894282195, 4903985955, 12621154315, 32302574959, 82248961437, 208426306113, 525884062427
OFFSET
1,4
COMMENTS
These are integer compositions whose set of parts covers some interval and contains k colors of each part k.
EXAMPLE
a(5) = 7 counts: (1,1,1,1,1), (1,2_a,2_b), (1,2_b,2_a), (2_a,1,2_b), (2_a,2_b,1), (2_b,1,2_a), (2_b,2_a,1).
PROG
(PARI)
colr(x, y)={my(r=y-x+1, v=[x..y], z = vector(r*(r+(1+(x-1)*2))/2), k=1); for(i=1, #v, for(j=1, v[i], z[k]=v[i]; k++)); return(z)}
C_x(s, N)={my(x='x+O('x^N), g=if(#s <1, 1, sum(i=1, #s, C_x(s[^i], N+1) * x^(s[i]) )/(1-sum(i=1, #s, x^(s[i]))))); return(g)}
B_x(N)={my(x='x+O('x^N), h=0); for(u=1, N, my(j=0); while(vecsum(colr(u, u+j)) <= N, h += C_x(colr(u, u+j), N+1); j++)); my(a = Vec(h)); vector(N, i, a[i])}
B_x(20)
KEYWORD
nonn
AUTHOR
John Tyler Rascoe, Jul 17 2024
STATUS
approved