login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of tilings using squares, dominos, and flexible trominos of a strip of length n-1 and with an n-th cell placed on top of the middle of the strip.
0

%I #11 Jul 19 2024 14:39:54

%S 0,1,2,4,7,12,21,40,76,139,254,466,855,1576,2905,5340,9816,18053,

%T 33202,61076,112351,206636,380045,699012,1285684,2364759,4349502,

%U 7999954,14714159,27063568,49777681,91555464,168396816,309729961,569682082,1047808756

%N Number of tilings using squares, dominos, and flexible trominos of a strip of length n-1 and with an n-th cell placed on top of the middle of the strip.

%C As an illustration, here are the figures for n=8 and n=9, respectively.

%C _ _

%C _____|_|_____ _______|_|_____

%C |_|_|_|_|_|_|_|, |_|_|_|_|_|_|_|_|.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,0,2,2,0,-1,-1).

%F a(n) = a(n-1) + 2*a(n-3) + 2*a(n-5) + 2*a(n-6) - a(n-8) - a(n-9).

%F a(2*n) = a(2*n-1) + a(2*n-3) + a(2*n-4) + 3*a(2*n-5) + 2*a(2*n-6) + a(2*n-7).

%F a(2*n) = A000073(2*n+1) + A000073(n+1)*(A000073(n+1) + 2*A000073(n)).

%F a(2*n+1) = a(2*n) + a(2*n-1) + a(2*n-3) + a(2*n-4) + a(2*n-5).

%F a(2*n+1) = A000073(2*n+2) + A000073(n+1)^2 + A000073(n+2)*(A000073(n+1) + A000073(n)).

%F G.f.: x*(1 + x + 2*x^2 + x^3 + x^4 - x^5 - x^6)/(1 - x - 2*x^3 - 2*x^5 -

%F 2*x^6 + x^8 + x^9).

%e For n=8, here is one of a(8)=76 possible tilings with squares, dominos, and flexible trominos.

%e _

%e _____| |_____

%e |___|_|___|___|.

%t LinearRecurrence[{1, 0, 2, 0, 2, 2, 0, -1, -1}, {0, 1, 2, 4, 7, 12, 21, 40, 76}, 40]

%Y Cf. A000073.

%K nonn,easy

%O 0,3

%A _Greg Dresden_ and Yinuo Zhu, Jul 17 2024