login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374485
Lexicographically earliest infinite sequence such that a(i) = a(j) => A350388(i) = A350388(j) and A351569(i) = A351569(j), for all i, j >= 1.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 20, 32, 33, 22, 34, 35, 36, 37, 26, 28, 38, 39, 40, 26, 41, 29, 42, 26, 42, 43, 33, 20, 44, 45, 34, 46, 47, 48, 49, 50, 51, 34, 49, 26, 52, 53, 54, 55, 56, 34, 57, 43, 58, 59, 60, 48, 61, 62, 63, 42, 64, 33, 65, 66, 44, 67, 49, 42, 68
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A350388(n), A351569(n)].
For all i, j >= 1: a(i) = a(j) => A000203(i) = A000203(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A350388(n) = { my(m=1, f=factor(n)); for(k=1, #f~, if(0==(f[k, 2]%2), m *= (f[k, 1]^f[k, 2]))); (m); };
A350389(n) = { my(m=1, f=factor(n)); for(k=1, #f~, if(1==(f[k, 2]%2), m *= (f[k, 1]^f[k, 2]))); (m); };
A351569(n) = sigma(A350389(n));
Aux374485(n) = [A350388(n), A351569(n)];
v374485 = rgs_transform(vector(up_to, n, Aux374485(n)));
A374485(n) = v374485[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 06 2024
STATUS
approved