login
A374481
The distance from prime(n) to the nearest common ancestor of prime(n) and 1+prime(n) in the Doudna-tree (A005940).
4
0, 1, 1, 3, 3, 2, 6, 5, 7, 8, 10, 4, 10, 9, 13, 15, 15, 7, 12, 19, 9, 19, 20, 22, 24, 20, 21, 27, 26, 23, 30, 28, 25, 32, 34, 28, 15, 25, 36, 31, 39, 39, 41, 19, 41, 45, 31, 44, 42, 43, 46, 50, 52, 51, 42, 52, 55, 51, 25, 46, 41, 61, 61, 59, 28, 51, 44, 67, 60, 68, 55, 70, 64, 71, 69, 74, 73, 32, 61, 69, 79, 35, 82
OFFSET
1,4
COMMENTS
Question: Is there any reasonable lower bound for this sequence?
Considering k that do not occur as terms of this sequence, see also A374214.
FORMULA
a(n) = A347381(A000040(n)) = n - A348040(A000040(n), 1+A000040(n)).
For all n >= 1, a(A059305(n)) = A059305(n)-1.
If A319988(1+A000040(n)) then a(n) = n-1.
For n > 1, a(n) = n - A241917(1+prime(n)) - 1. - Peter Munn and Antti Karttunen, Jul 10 2024
PROG
(PARI) A374481(n) = A347381(prime(n));
(PARI)
A241917(n) = if(isprime(n), primepi(n), if(1>=omega(n), 0, my(f=factor(n)); if(f[#f~, 2]>1, 0, primepi(f[#f~, 1])-primepi(f[(#f~)-1, 1]))));
A374481(n) = if(1==n, 0, (-1+n-A241917(1+prime(n))));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 09 2024
STATUS
approved