login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374397
a(n) is the number of 4-step self avoiding walks in the n-dimensional hypercubic lattice that start at the origin.
1
2, 100, 726, 2696, 7210, 15852, 30590, 53776, 88146, 136820, 203302, 291480, 405626, 550396, 730830, 952352, 1220770, 1542276, 1923446, 2371240, 2893002, 3496460, 4189726, 4981296, 5880050, 6895252, 8036550, 9313976, 10737946, 12319260, 14069102, 15999040, 18121026
OFFSET
1,1
COMMENTS
We have the formula below because we have 2*n choices for the first step, and (2*n-1)^3 choices for the next three, but have counted exactly 2*n*(2*n-1)*(2*n-2) self-intersecting walks.
REFERENCES
N. Madras and G. Slade, "The Self Avoiding Walk", Birkhäuser, 2013.
FORMULA
a(n) = 16*n^4 - 24*n^3 + 8*n^2 + 2*n.
G.f.: 2*x*(1 + 45*x + 123*x^2 + 23*x^3)/(1 - x)^5. - Stefano Spezia, Jul 07 2024
MATHEMATICA
A374397[n_] := 2*n*(4*n*(n - 1)*(2*n - 1) + 1);
Array[A374397, 50] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {2, 100, 726, 2696, 7210}, 50] (* Paolo Xausa, Sep 23 2024 *)
CROSSREFS
Cf. A010575.
Sequence in context: A276386 A333023 A171396 * A202945 A230816 A174646
KEYWORD
nonn,walk,easy
AUTHOR
Johann Peters, Jul 07 2024
STATUS
approved