login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174646
Number of ways to place 7 nonattacking amazons (superqueens) on a 7 X n board.
2
0, 0, 0, 0, 0, 0, 0, 0, 2, 100, 908, 4872, 19818, 66864, 193926, 498924, 1165544, 2517036, 5089430, 9731908, 17735888, 30999920, 52234274, 85210284, 135059570, 208627984, 314889330, 465423908, 674966914, 962031720, 1349613074
OFFSET
1,9
COMMENTS
An amazon (superqueen) moves like a queen and a knight.
FORMULA
G.f.: 2*x^9 * (8*x^22 - 4*x^21 - 9*x^20 + 102*x^18 - 138*x^17 + 29*x^16 + 592*x^15 - 1610*x^14 + 2772*x^13 - 3091*x^12 + 3178*x^11 - 2049*x^10 + 1312*x^9 - 625*x^8 + 1438*x^7 - 449*x^6 + 388*x^5 + 403*x^4 + 148*x^3 + 82*x^2 + 42*x + 1)/(x-1)^8.
Explicit formula: a(n) = n^7 - 85n^6 + 3329n^5 - 77911n^4 + 1175240n^3 - 11392990n^2 + 65448630n -171006180, n>=24.
MATHEMATICA
CoefficientList[Series[2 x^8 (8 x^22 - 4 x^21 - 9 x^20 + 102 x^18 - 138 x^17 + 29 x^16 + 592 x^15 - 1610 x^14 + 2772 x^13 - 3091 x^12 + 3178 x^11 - 2049 x^10 + 1312 x^9 - 625 x^8 + 1438 x^7 - 449 x^6 + 388 x^5 + 403 x^4 + 148 x^3 + 82 x^2 + 42 x + 1) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Mar 25 2010
STATUS
approved