login
A374394
Irregular table T(n, k), n >= 0, 0 <= k < A277561(1+A003754(n)), read by rows; the n-th row lists the numbers z <= n such that the Zeckendorf representations of z and n-z have no common Fibonacci numbers and when combined together correspond to the lazy Fibonacci representation of n.
3
0, 0, 1, 0, 2, 1, 2, 0, 1, 3, 4, 2, 3, 2, 4, 0, 2, 5, 7, 1, 2, 6, 7, 3, 4, 5, 6, 3, 7, 4, 7, 0, 1, 3, 4, 8, 9, 11, 12, 2, 3, 10, 11, 2, 4, 10, 12, 5, 7, 8, 10, 6, 7, 9, 10, 5, 6, 11, 12, 7, 11, 7, 12, 0, 2, 5, 7, 13, 15, 18, 20, 1, 2, 6, 7, 14, 15, 19, 20, 3, 4, 5, 6, 16, 17, 18, 19
OFFSET
0,5
FORMULA
T(n, k) = A022290(A374354(1+A003754(n)), k).
EXAMPLE
Triangle T(n, k) begins:
n n-th row
-- ------------------------
0 0
1 0, 1
2 0, 2
3 1, 2
4 0, 1, 3, 4
5 2, 3
6 2, 4
7 0, 2, 5, 7
8 1, 2, 6, 7
9 3, 4, 5, 6
10 3, 7
11 4, 7
12 0, 1, 3, 4, 8, 9, 11, 12
13 2, 3, 10, 11
14 2, 4, 10, 12
PROG
(PARI) \\ See Links section.
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Rémy Sigrist, Jul 07 2024
STATUS
approved