OFFSET
1
COMMENTS
Positions of zeros appear to give A337945.
a(n) != 0 if and only if mu(n) != 0 and i^n is purely imaginary, i.e., n is odd and squarefree. - Chai Wah Wu, Jul 06 2024 [Corrected by Jianing Song, Dec 18 2024]
LINKS
Jianing Song, Table of n, a(n) for n = 1..10000
FORMULA
From Jianing Song, Dec 18 2024: (Start)
Dirichlet inverse of A101455.
Multiplicative with a(p^r) = a(2) = 0 for all primes p and all r >= 2, a(p) = -1 if p == 1 (mod 4), a(p) = 1 if p == 3 (mod 4).
Dirichlet g.f. is the reciprocal of the Dirichlet beta function.
In general, let f be a multiplicative function, and g(n) = mu(n)*f(n) (where mu = A008683), then f and g are Dirichlet inverses of each other if and only if f is completely multiplicative.
Proof: The L-series associated with f * g is L(s) = Product_{p prime} ((1 + Sum_{r>=1} f(p^r)/p^(rs)) * (1 - f(p)/p^r), so f * g = 1 if and only if (1 + Sum_{r>=1} f(p^r)/p^(rs)) * (1 - f(p)/p^r) = 1 for all primes p, and we have (1 + Sum_{r>=1} f(p^r)/p^(rs)) * (1 - f(p)/p^r) = 1 <=> 1 + Sum_{r>=1} f(p^r)/p^(rs) = 1/(1 - f(p)/p^r) = Sum_{r>=0} f(p)^r/p^(rs) <=> f(p^r) = f(p)^r for r >= 1. (End)
MATHEMATICA
nn = 83; ParallelTable[Im[(I^n)*MoebiusMu[n]], {n, 1, nn}]
PROG
(Python)
from sympy import mobius
def A374367(n): return mobius(n)*(0, 1, 0, -1)[n&3] # Chai Wah Wu, Jul 06 2024
(PARI) a(n) = moebius(n)*kronecker(-4, n) \\ Jianing Song, Dec 18 2024
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Mats Granvik, Jul 06 2024
STATUS
approved