login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285128 1-limiting word of the morphism 0->10, 1-> 0000. 4
1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1->0000 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 000010 -> 10101010000010 -> 00001000001000001000001010101010000010; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 000010 -> 10101010000010, as in A285128.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 0, 0}}] &, {0}, 13]; (* A285128 *)

Flatten[Position[s, 0]];  (* A285129 *)

Flatten[Position[s, 1]];  (* A285130 *)

CROSSREFS

Cf. A285125, A285128, A285130.

Sequence in context: A147850 A286046 A189215 * A080545 A099991 A091069

Adjacent sequences:  A285125 A285126 A285127 * A285129 A285130 A285131

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 22:39 EST 2019. Contains 329305 sequences. (Running on oeis4.)