OFFSET
0,6
COMMENTS
A minor variant of A166445. - R. J. Mathar, Jul 01 2024
LINKS
Max Alekseyev, Determinant of a certain Toeplitz matrix, MathOverflow, 2020.
Index entries for linear recurrences with constant coefficients, signature (1,-2,2,-1,1).
FORMULA
G.f.: (1 + x^2 - x^3 + x^4)/((1 - x)*(1 + x^2)^2).
a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
E.g.f.: (exp(x) + (1 + x)*cos(x))/2.
For a proof of the generating function and the recursion formula, see MathOverflow link. - Sela Fried, Jul 09 2024
EXAMPLE
a(4) = 1:
[1, 1, 2, 3]
[1, 1, 1, 2]
[2, 1, 1, 1]
[3, 2, 1, 1]
MATHEMATICA
a[n_]:=Det[Table[If[i == j, 1, Abs[i - j]], {i, n}, {j, n}]]; Join[{1}, Array[a, 75]]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, abs(i-j)))); \\ Michel Marcus, Jun 29 2024
(Python)
from sympy import Matrix
def A374139(n): return Matrix(n, n, [abs(j-k) if j!=k else 1 for j in range(n) for k in range(n)]).det() # Chai Wah Wu, Jul 01 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stefano Spezia, Jun 28 2024
STATUS
approved