login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166445
Hankel transform of A025276.
3
1, 0, -1, 1, 3, 0, -3, 1, 5, 0, -5, 1, 7, 0, -7, 1, 9, 0, -9, 1, 11, 0, -11, 1, 13, 0, -13, 1, 15, 0, -15, 1, 17, 0, -17, 1, 19, 0, -19, 1, 21, 0, -21, 1, 23, 0, -23, 1, 25, 0, -25, 1, 27, 0, -27, 1, 29, 0, -29, 1, 31, 0, -31, 1, 33, 0, -33, 1, 35, 0, -35, 1
OFFSET
0,5
LINKS
Han Wang and Zhi-Wei Sun, Evaluations of three determinants, arXiv:2206.12317 [math.NT], 2022.
FORMULA
G.f.: (1-x+x^2+x^4)/((1-x)*(1+x^2)^2).
a(n) = (1/2)*(1 + cos((n+1)*Pi/2) + (n+1)*sin((n+1)*Pi/2)). - Harvey P. Dale, Nov 21 2014; corrected by Bernard Schott, Jun 27 2022
For n >= 0: a(4n) = 2n+1; a(4n+1) = 0; a(4n+2) = -a(4n) = -2n-1; a(4n+3) = 1. - Bernard Schott, Jun 27 2022
a(n) - a(n-1) = A127365(n+1). - R. J. Mathar, Jul 01 2024
E.g.f.: (exp(x) + cos(x) - (1 + x)*sin(x))/2. - Stefano Spezia, Jul 14 2024
a(n) = (1/2)*(1 - A056594(n) - A056594(n-1) + 2*(-1)^floor(n/2) * A027656(n)). - G. C. Greubel, Jul 27 2024
MATHEMATICA
LinearRecurrence[{1, -2, 2, -1, 1}, {1, 0, -1, 1, 3}, 80] (* Harvey P. Dale, Nov 21 2014 *)
PROG
(PARI) Vec((1-x+x^2+x^4)/((1-x)*(1+x^2)^2) + O(x^80)) \\ Felix Fröhlich, Jun 28 2022
(Magma)
R<x>:=PowerSeriesRing(Integers(), 80);
Coefficients(R!( (1-x+x^2+x^4)/((1-x)*(1+x^2)^2) )); // G. C. Greubel, Jul 27 2024
(SageMath)
def A166445_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2+x^4)/((1-x)*(1+x^2)^2) ).list()
A166445_list(80) # G. C. Greubel, Jul 27 2024
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 13 2009
STATUS
approved