login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A373976
a(n) = A001222(n) - A001222(A001414(n)), where A001222 is bigomega, the number of prime factors with multiplicity, and A001414 is sopfr, sum of prime factors with multiplicity. a(1) = 0 by convention.
2
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, -1, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 0, 1, 0, 3, 0, 1, -1, 2, 0, 0, -2, 3, 0, 0, 0, 1, 2, 0, 0, 4, 0, 0, -1, 2, 0, 3, -2, 3, 0, 1, 0, 1, 0, 0, 2, 3, -1, -1, 0, 1, 0, 1, 0, 2, 0, 0, 2, 2, -1, 0, 0, 4, 1, 1, 0, 2, 0, -1, -3, 3, 0, 3, -1, 0, 0, 0, -2, 5, 0, -1, 2, 2, 0
OFFSET
1,12
LINKS
FORMULA
a(n) = A001222(n) - A342956(n).
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A373976(n) = if(1==n, 0, bigomega(n)-bigomega(A001414(n)));
CROSSREFS
Cf. also A045835.
Sequence in context: A134363 A054015 A375933 * A369164 A370815 A056137
KEYWORD
sign
AUTHOR
Antti Karttunen, Jun 24 2024
STATUS
approved