login
A373973
a(n) = 1 if n can be expressed as (a^3 + b^3)/(a*b) with b > a >= 1, otherwise 0.
4
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 if n has a divisor that is a sum of 2 distinct positive cubes (i.e., is one of the terms of A024670), otherwise 0.
FORMULA
a(n) = signum(A373974(n)) = [A373974(n) > 0], where [ ] is the Iverson bracket.
PROG
(PARI)
A373971(n) = if(0==n, n, for(i=ceil(sqrtn(n\2+1, 3)), sqrtn(n-(1/2), 3), if(ispower(n-(i^3), 3), return(1))); 0); \\ After M. F. Hasler's Apr 12 2008 program in A024670.
A373973(n) = { fordiv(n, d, if(A373971(d), return(1))); 0; };
CROSSREFS
Characteristic function of A359225.
Sequence in context: A353569 A353477 A044939 * A371084 A353626 A347244
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 24 2024
STATUS
approved