login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A373491
a(n) = 1 if A059975(n) and A083345(n) are both multiples of 3, otherwise 0, where A059975 is fully additive with a(p) = p-1, and A083345 is the numerator of the fully additive function with a(p) = 1/p.
6
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = [A373377(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
a(n) <= A373493(n).
PROG
(PARI)
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A373491(n) = (!(A059975(n)%3) && !(A083345(n)%3));
CROSSREFS
Characteristic function of A373492.
Sequence in context: A015626 A015920 A014744 * A373588 A373596 A373472
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 10 2024
STATUS
approved