login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A373472
a(n) = 1 if A001414(n) and A059975(n) are both multiples of 3, otherwise 0, where A001414 and A059975 are fully additive with a(p) = p and a(p) = p-1, respectively.
2
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = [A373369(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A059975(n) = { my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373472(n) = (!(A001414(n)%3) && !(A059975(n)%3));
CROSSREFS
Characteristic function of A373473.
Sequence in context: A373491 A373588 A373596 * A373493 A014646 A015283
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 06 2024
STATUS
approved