login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373217
Expansion of Sum_{k>=0} x^(7^k) / (1 - x^(7^k)).
6
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,7
LINKS
FORMULA
G.f. A(x) satisfies A(x) = x/(1 - x) + A(x^7).
a(7*n+1) = a(7*n+2) = ... = (7*n+6) = 1 and a(7*n+7) = 1 + a(n+1) for n >= 0.
Multiplicative with a(p^e) = e+1 if p = 7, 1 otherwise.
a(n) = -Sum_{d|n} mu(7*d) * tau(n/d).
a(n) = A214411(n) + 1.
From Amiram Eldar, May 29 2024: (Start)
Dirichlet g.f.: (7^s/(7^s-1)) * zeta(s).
Sum_{k=1..n} a(k) ~ (7/6) * n. (End)
MATHEMATICA
a[n_] := 1 + IntegerExponent[n, 7]; Array[a, 100] (* Amiram Eldar, May 29 2024 *)
PROG
(PARI) a(n) = valuation(n, 7)+1;
KEYWORD
nonn,mult,easy
AUTHOR
Seiichi Manyama, May 28 2024
STATUS
approved