The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A373213 Numbers k such that k^2 - 1 and k^2 + 1 have 6 divisors each. 0
 168, 1368, 97968, 10374840, 16104168, 44049768, 68674368, 100741368, 281803368, 486775968, 1177381968, 1262878368, 1336852968, 2321986968, 2404627368, 3476635368, 4374102768, 5102102040, 5142754368, 5182128168, 5385651768, 6035269968, 9218496168, 10657878168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Each term is a number of the form k = sqrt(p^2 * q + 1) such that q = p^2 - 2 and k^2 + 1 = r^2 * s, where p, q, r, and s are distinct primes. LINKS Table of n, a(n) for n=1..24. FORMULA { k : tau(k^2 - 1) = tau(k^2 + 1) = 6}, where tau() is the number of divisors function, A000005. EXAMPLE 168 is a term: both 168^2 - 1 = 28223 = 13^2 * 167 and 168^2 + 1 = 28225 = 5^2 * 1129 have 6 divisors. CROSSREFS Cf. A000005, A002522, A005563, A069062, A108278, A193432, A347191, A373209. Sequence in context: A070835 A112551 A303622 * A263121 A216107 A235932 Adjacent sequences: A373210 A373211 A373212 * A373214 A373215 A373216 KEYWORD nonn AUTHOR Jon E. Schoenfield, Jun 21 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 19:25 EDT 2024. Contains 375058 sequences. (Running on oeis4.)