login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372945
Numbers k that divide the k-th Wedderburn-Etherington number.
0
1, 6, 36, 49, 61, 223, 4258, 9747
OFFSET
1,2
COMMENTS
Numbers k such that k | A001190(k).
a(9) > 90000, if it exists.
EXAMPLE
6 is a term since A001190(6) = 6 is divisible by 6.
36 is a term since A001190(36) = 249959727972 = 36 * 6943325777 is divisible by 36.
MATHEMATICA
v[0] = 0; v[1] = 1; v[n_] := v[n] = Sum[v[k] * v[n-k], {k, 1, Floor[(n-1)/2]}] + If[EvenQ[n], v[n/2]*(v[n/2]+1)/2, 0]; Select[Range[10^4], Divisible[v[#], #] &]
PROG
(PARI) lista(kmax) = {my(v = vector(kmax, i, 1)); print1(1, ", "); for(k = 4, kmax, v[k] = sum(i = 1, (k-1)\2, v[i] * v[k-i]) + if(!(k % 2), v[k/2] * (v[k/2] + 1)/2); if(!(v[k] % k), print1(k, ", "))); }
CROSSREFS
Cf. A001190.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).
Sequence in context: A232137 A008460 A132633 * A047792 A178909 A206982
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 17 2024
STATUS
approved