login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k that divide the k-th Wedderburn-Etherington number.
0

%I #10 May 18 2024 09:52:40

%S 1,6,36,49,61,223,4258,9747

%N Numbers k that divide the k-th Wedderburn-Etherington number.

%C Numbers k such that k | A001190(k).

%C a(9) > 90000, if it exists.

%e 6 is a term since A001190(6) = 6 is divisible by 6.

%e 36 is a term since A001190(36) = 249959727972 = 36 * 6943325777 is divisible by 36.

%t v[0] = 0; v[1] = 1; v[n_] := v[n] = Sum[v[k] * v[n-k], {k, 1, Floor[(n-1)/2]}] + If[EvenQ[n], v[n/2]*(v[n/2]+1)/2, 0]; Select[Range[10^4], Divisible[v[#], #] &]

%o (PARI) lista(kmax) = {my(v = vector(kmax, i, 1)); print1(1, ", "); for(k = 4, kmax, v[k] = sum(i = 1, (k-1)\2, v[i] * v[k-i]) + if(!(k % 2), v[k/2] * (v[k/2] + 1)/2); if(!(v[k] % k), print1(k, ", ")));}

%Y Cf. A001190.

%Y Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

%K nonn,more

%O 1,2

%A _Amiram Eldar_, May 17 2024