login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372813
Expansion of e.g.f. D(x) satisfying D(x) = cosh( 2*x*cosh(x*D(x)) ), where a(n) is the coefficient of x^(2*n)/(2*n)! in D(x) for n >= 0.
4
1, 4, 64, 7264, 1242112, 396112384, 195196856320, 135610245824512, 128604645225791488, 158304763492800790528, 246175295718345884041216, 471837283882871579572436992, 1092672848842771034323176914944, 3008542003438261199300841957228544, 9713742135846618809223753670120701952
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{j=0..n} A370432(n,j) * 2^(2*j).
E.g.f.: D(x) = Sum_{n>=0} a(n) * x^(2*n)/(2*n)! along with related functions denoted by C = C(x), S = S(x), D = D(x), and T = T(x) satisfy the following formulas.
Definition.
(1.a) (C + S) = exp(x*D).
(1.b) (D + 2*T) = exp(2*x*C).
(2.a) C^2 - S^2 = 1.
(2.b) D^2 - 4*T^2 = 1.
Hyperbolic functions.
(3.a) C = cosh(x*D).
(3.b) S = sinh(x*D).
(3.c) D = cosh(2*x*C).
(3.d) T = (1/2) * sinh(2*x*C).
(4.a) C = cosh( x*cosh(2*x*C) ).
(4.b) S = sinh( x*cosh(2*x*sqrt(1 + S^2)) ).
(4.c) D = cosh( 2*x*cosh(x*D) ).
(4.d) T = (1/2) * sinh( 2*x*cosh(x*sqrt(1 + 4*T^2)) ).
(5.a) (C*D + 2*S*T) = cosh(x*D + 2*x*C).
(5.b) (S*D + 2*C*T) = sinh(x*D + 2*x*C).
Integrals.
(6.a) C = 1 + Integral S*D + x*S*D' dx.
(6.b) S = Integral C*D + x*C*D' dx.
(6.c) D = 1 + 4 * Integral T*C + x*T*C' dx.
(6.d) T = Integral D*C + x*D*C' dx.
Derivatives (d/dx).
(7.a) C*C' = S*S'.
(7.b) D*D' = 4*T*T'.
(8.a) C' = S * (D + x*D').
(8.b) S' = C * (D + x*D').
(8.c) D' = 4 * T * (C + x*C').
(8.d) T' = D * (C + x*C').
(9.a) C' = S * (D + 4*x*T*C) / (1 - 4*x^2*S*T).
(9.b) S' = C * (D + 4*x*T*C) / (1 - 4*x^2*S*T).
(9.c) D' = 4 * T * (C + x*S*D) / (1 - 4*x^2*S*T).
(9.d) T' = D * (C + x*S*D) / (1 - 4*x^2*S*T).
(10.a) (C + x*C') = (C + x*S*D) / (1 - 4*x^2*S*T).
(10.b) (D + x*D') = (D + 4*x*T*C) / (1 - 4*x^2*S*T).
Logarithms.
(11.a) D = log(C + sqrt(C^2 - 1)) / x.
(11.b) C = log(D + sqrt(D^2 - 1)) / (2*x).
(11.c) T = sqrt(log(S + sqrt(1 + S^2))^2 - x^2) / (2*x).
(11.d) S = sqrt(log(2*T + sqrt(1 + 4*T^2))^2 - 4*x^2) / (2*x).
The radius of convergence r of e.g.f. D(x) is r = 0.458693345589772637742719473602361341151810356245785213... where D(r) = 2.216675597008249888019540624981069492182564304724769248...
EXAMPLE
E.g.f: D(x) = 1 + 4*x^2/2! + 64*x^4/4! + 7264*x^6/6! + 1242112*x^8/8! + 396112384*x^10/10! + 195196856320*x^12/12! + 135610245824512*x^14/14! + ...
and D(x) = cosh( 2*x*cosh(x*D(x)) ).
RELATED SERIES.
Related functions C(x), S(x), and T(x) are described below.
C(x) = 1 + x^2/2! + 49*x^4/4! + 3601*x^6/6! + 680737*x^8/8! + 218915041*x^10/10! + 105958624465*x^12/12! + 74506995584113*x^14/14! + ...
where C = cosh(x*D)
and C(x) = cosh( x*cosh(2*x*C(x)) ).
S(x) = x + 13*x^3/3! + 441*x^5/5! + 68069*x^7/7! + 15591025*x^9/9! + 6212017725*x^11/11! + 3652639410473*x^13/13! + 2963960104898581*x^15/15! + ...
where S(x) = S = sinh(x*D)
and S(x) = sinh( x*cosh( 2*x*sqrt(1 + S(x)^2) ) ).
T(x) = x + 7*x^3/3! + 381*x^5/5! + 50051*x^7/7! + 11899705*x^9/9! + 4787171775*x^11/11! + 2800735142453*x^13/13! + 2286983798222779*x^15/15! + ...
where T(x) = (1/2) * sqrt(D^2 - 1)
and T(x) = (1/2) * sinh( 2*x*cosh( x*sqrt(1 + 4*T(x)^2) ) ).
SPECIFIC VALUES.
D(1/3) = 1.276880244449228122993163054974488376796865611992370031...
D(1/4) = 1.138485942600540714616500323386982626365733417421170976...
D(1/5) = 1.085004369634098854421041251800873218914671999144038407...
D(1/6) = 1.057849764714936388260012199112395774792001649565003101...
D(1/10) = 1.020277074958546717842943931766605150247847706664020751...
PROG
(PARI) /* From D(x) = cosh( 2*x*cosh(x*D(x)) ) */
{a(n) = my(D=1); for(i=0, n, D=truncate(D); D = cosh( 2*x*cosh(x*D + x*O(x^(2*i))) ));
(2*n)! * polcoeff(D, 2*n, x)}
for(n=0, 30, print1( a(n), ", "))
(PARI) /* From A370432 at k = 2 */
{a(n, k = 2) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n)));
for(i=1, 2*n,
C = cosh( x*cosh(k*x*C +Ox) );
S = sinh( x*cosh(k*x*sqrt(1 + S^2 +Ox)) );
D = cosh( k*x*cosh(x*D +Ox));
T = (1/k)*sinh( k*x*cosh(x*sqrt(1 + k^2*T^2 +Ox))); );
(2*n)! * polcoeff(D, 2*n, x)}
for(n=0, 30, print1( a(n), ", "))
CROSSREFS
Cf. A370432 (k = 2), A372811 (C(x)), A372812 (S(x)), A372814 (T(x)), A143601.
Sequence in context: A359231 A326868 A211214 * A229867 A362383 A051191
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2024
STATUS
approved