Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 17 2024 10:20:05
%S 1,4,64,7264,1242112,396112384,195196856320,135610245824512,
%T 128604645225791488,158304763492800790528,246175295718345884041216,
%U 471837283882871579572436992,1092672848842771034323176914944,3008542003438261199300841957228544,9713742135846618809223753670120701952
%N Expansion of e.g.f. D(x) satisfying D(x) = cosh( 2*x*cosh(x*D(x)) ), where a(n) is the coefficient of x^(2*n)/(2*n)! in D(x) for n >= 0.
%H Paul D. Hanna, <a href="/A372813/b372813.txt">Table of n, a(n) for n = 0..300</a>
%F a(n) = Sum_{j=0..n} A370432(n,j) * 2^(2*j).
%F E.g.f.: D(x) = Sum_{n>=0} a(n) * x^(2*n)/(2*n)! along with related functions denoted by C = C(x), S = S(x), D = D(x), and T = T(x) satisfy the following formulas.
%F Definition.
%F (1.a) (C + S) = exp(x*D).
%F (1.b) (D + 2*T) = exp(2*x*C).
%F (2.a) C^2 - S^2 = 1.
%F (2.b) D^2 - 4*T^2 = 1.
%F Hyperbolic functions.
%F (3.a) C = cosh(x*D).
%F (3.b) S = sinh(x*D).
%F (3.c) D = cosh(2*x*C).
%F (3.d) T = (1/2) * sinh(2*x*C).
%F (4.a) C = cosh( x*cosh(2*x*C) ).
%F (4.b) S = sinh( x*cosh(2*x*sqrt(1 + S^2)) ).
%F (4.c) D = cosh( 2*x*cosh(x*D) ).
%F (4.d) T = (1/2) * sinh( 2*x*cosh(x*sqrt(1 + 4*T^2)) ).
%F (5.a) (C*D + 2*S*T) = cosh(x*D + 2*x*C).
%F (5.b) (S*D + 2*C*T) = sinh(x*D + 2*x*C).
%F Integrals.
%F (6.a) C = 1 + Integral S*D + x*S*D' dx.
%F (6.b) S = Integral C*D + x*C*D' dx.
%F (6.c) D = 1 + 4 * Integral T*C + x*T*C' dx.
%F (6.d) T = Integral D*C + x*D*C' dx.
%F Derivatives (d/dx).
%F (7.a) C*C' = S*S'.
%F (7.b) D*D' = 4*T*T'.
%F (8.a) C' = S * (D + x*D').
%F (8.b) S' = C * (D + x*D').
%F (8.c) D' = 4 * T * (C + x*C').
%F (8.d) T' = D * (C + x*C').
%F (9.a) C' = S * (D + 4*x*T*C) / (1 - 4*x^2*S*T).
%F (9.b) S' = C * (D + 4*x*T*C) / (1 - 4*x^2*S*T).
%F (9.c) D' = 4 * T * (C + x*S*D) / (1 - 4*x^2*S*T).
%F (9.d) T' = D * (C + x*S*D) / (1 - 4*x^2*S*T).
%F (10.a) (C + x*C') = (C + x*S*D) / (1 - 4*x^2*S*T).
%F (10.b) (D + x*D') = (D + 4*x*T*C) / (1 - 4*x^2*S*T).
%F Logarithms.
%F (11.a) D = log(C + sqrt(C^2 - 1)) / x.
%F (11.b) C = log(D + sqrt(D^2 - 1)) / (2*x).
%F (11.c) T = sqrt(log(S + sqrt(1 + S^2))^2 - x^2) / (2*x).
%F (11.d) S = sqrt(log(2*T + sqrt(1 + 4*T^2))^2 - 4*x^2) / (2*x).
%F The radius of convergence r of e.g.f. D(x) is r = 0.458693345589772637742719473602361341151810356245785213... where D(r) = 2.216675597008249888019540624981069492182564304724769248...
%e E.g.f: D(x) = 1 + 4*x^2/2! + 64*x^4/4! + 7264*x^6/6! + 1242112*x^8/8! + 396112384*x^10/10! + 195196856320*x^12/12! + 135610245824512*x^14/14! + ...
%e and D(x) = cosh( 2*x*cosh(x*D(x)) ).
%e RELATED SERIES.
%e Related functions C(x), S(x), and T(x) are described below.
%e C(x) = 1 + x^2/2! + 49*x^4/4! + 3601*x^6/6! + 680737*x^8/8! + 218915041*x^10/10! + 105958624465*x^12/12! + 74506995584113*x^14/14! + ...
%e where C = cosh(x*D)
%e and C(x) = cosh( x*cosh(2*x*C(x)) ).
%e S(x) = x + 13*x^3/3! + 441*x^5/5! + 68069*x^7/7! + 15591025*x^9/9! + 6212017725*x^11/11! + 3652639410473*x^13/13! + 2963960104898581*x^15/15! + ...
%e where S(x) = S = sinh(x*D)
%e and S(x) = sinh( x*cosh( 2*x*sqrt(1 + S(x)^2) ) ).
%e T(x) = x + 7*x^3/3! + 381*x^5/5! + 50051*x^7/7! + 11899705*x^9/9! + 4787171775*x^11/11! + 2800735142453*x^13/13! + 2286983798222779*x^15/15! + ...
%e where T(x) = (1/2) * sqrt(D^2 - 1)
%e and T(x) = (1/2) * sinh( 2*x*cosh( x*sqrt(1 + 4*T(x)^2) ) ).
%e SPECIFIC VALUES.
%e D(1/3) = 1.276880244449228122993163054974488376796865611992370031...
%e D(1/4) = 1.138485942600540714616500323386982626365733417421170976...
%e D(1/5) = 1.085004369634098854421041251800873218914671999144038407...
%e D(1/6) = 1.057849764714936388260012199112395774792001649565003101...
%e D(1/10) = 1.020277074958546717842943931766605150247847706664020751...
%o (PARI) /* From D(x) = cosh( 2*x*cosh(x*D(x)) ) */
%o {a(n) = my(D=1); for(i=0,n, D=truncate(D); D = cosh( 2*x*cosh(x*D + x*O(x^(2*i))) ));
%o (2*n)! * polcoeff(D, 2*n, x)}
%o for(n=0, 30, print1( a(n), ", "))
%o (PARI) /* From A370432 at k = 2 */
%o {a(n, k = 2) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n)));
%o for(i=1, 2*n,
%o C = cosh( x*cosh(k*x*C +Ox) );
%o S = sinh( x*cosh(k*x*sqrt(1 + S^2 +Ox)) );
%o D = cosh( k*x*cosh(x*D +Ox));
%o T = (1/k)*sinh( k*x*cosh(x*sqrt(1 + k^2*T^2 +Ox))); );
%o (2*n)! * polcoeff(D, 2*n, x)}
%o for(n=0, 30, print1( a(n), ", "))
%Y Cf. A370432 (k = 2), A372811 (C(x)), A372812 (S(x)), A372814 (T(x)), A143601.
%K nonn
%O 0,2
%A _Paul D. Hanna_, May 16 2024