login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372814
Expansion of e.g.f. T(x) satisfying T(x) = (1/2) * sinh( 2*x*cosh( x*sqrt(1 + 4*T(x)^2) ) ), where a(n) is the coefficient of x^(2*n+1)/(2*n+1)! in T(x) for n >= 0.
4
1, 7, 381, 50051, 11899705, 4787171775, 2800735142453, 2286983798222779, 2476757127978318705, 3434360322639603491447, 5940446259665147492879341, 12533181362722474751715110643, 31687559294370295303515685200041, 94578054008984518849163257005668911
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{j=0..n} A370433(n,j) * 2^(2*j).
E.g.f.: T(x) = Sum_{n>=0} a(n) * x^(2*n+1)/(2*n+1)! along with related functions denoted by C = C(x), S = S(x), D = D(x), and T = T(x) satisfy the following formulas.
Definition.
(1.a) (C + S) = exp(x*D).
(1.b) (D + 2*T) = exp(2*x*C).
(2.a) C^2 - S^2 = 1.
(2.b) D^2 - 4*T^2 = 1.
Hyperbolic functions.
(3.a) C = cosh(x*D).
(3.b) S = sinh(x*D).
(3.c) D = cosh(2*x*C).
(3.d) T = (1/2) * sinh(2*x*C).
(4.a) C = cosh( x*cosh(2*x*C) ).
(4.b) S = sinh( x*cosh(2*x*sqrt(1 + S^2)) ).
(4.c) D = cosh( 2*x*cosh(x*D) ).
(4.d) T = (1/2) * sinh( 2*x*cosh(x*sqrt(1 + 4*T^2)) ).
(5.a) (C*D + 2*S*T) = cosh(x*D + 2*x*C).
(5.b) (S*D + 2*C*T) = sinh(x*D + 2*x*C).
Integrals.
(6.a) C = 1 + Integral S*D + x*S*D' dx.
(6.b) S = Integral C*D + x*C*D' dx.
(6.c) D = 1 + 4 * Integral T*C + x*T*C' dx.
(6.d) T = Integral D*C + x*D*C' dx.
Derivatives (d/dx).
(7.a) C*C' = S*S'.
(7.b) D*D' = 4*T*T'.
(8.a) C' = S * (D + x*D').
(8.b) S' = C * (D + x*D').
(8.c) D' = 4 * T * (C + x*C').
(8.d) T' = D * (C + x*C').
(9.a) C' = S * (D + 4*x*T*C) / (1 - 4*x^2*S*T).
(9.b) S' = C * (D + 4*x*T*C) / (1 - 4*x^2*S*T).
(9.c) D' = 4 * T * (C + x*S*D) / (1 - 4*x^2*S*T).
(9.d) T' = D * (C + x*S*D) / (1 - 4*x^2*S*T).
(10.a) (C + x*C') = (C + x*S*D) / (1 - 4*x^2*S*T).
(10.b) (D + x*D') = (D + 4*x*T*C) / (1 - 4*x^2*S*T).
Logarithms.
(11.a) D = log(C + sqrt(C^2 - 1)) / x.
(11.b) C = log(D + sqrt(D^2 - 1)) / (2*x).
(11.c) T = sqrt(log(S + sqrt(1 + S^2))^2 - x^2) / (2*x).
(11.d) S = sqrt(log(2*T + sqrt(1 + 4*T^2))^2 - 4*x^2) / (2*x).
The radius of convergence r of e.g.f. T(x) is r = 0.458693345589772637742719473602361341151810356245785213... where T(r) = 0.989147448863398861152401518907145018698758995598697027...
EXAMPLE
E.g.f: T(x) = x + 7*x^3/3! + 381*x^5/5! + 50051*x^7/7! + 11899705*x^9/9! + 4787171775*x^11/11! + 2800735142453*x^13/13! + 2286983798222779*x^15/15! + ...
and T(x) = (1/2) * sinh( 2*x*cosh( x*sqrt(1 + 4*T(x)^2) ) ).
RELATED SERIES.
Related functions C(x), S(x), and D(x) are described below.
C(x) = 1 + x^2/2! + 49*x^4/4! + 3601*x^6/6! + 680737*x^8/8! + 218915041*x^10/10! + 105958624465*x^12/12! + 74506995584113*x^14/14! + ...
where C(x) = cosh( x*sqrt(1 + 4*T(x)^2) )
and C(x) = cosh( x*cosh(2*x*C(x)) ).
S(x) = x + 13*x^3/3! + 441*x^5/5! + 68069*x^7/7! + 15591025*x^9/9! + 6212017725*x^11/11! + 3652639410473*x^13/13! + 2963960104898581*x^15/15! + ...
where S(x) = sinh( x*sqrt(1 + 4*T(x)^2) )
and S(x) = sinh( x*cosh( 2*x*sqrt(1 + S(x)^2) ) ).
D(x) = 1 + 4*x^2/2! + 64*x^4/4! + 7264*x^6/6! + 1242112*x^8/8! + 396112384*x^10/10! + 195196856320*x^12/12! + 135610245824512*x^14/14! + ...
where D(x) = sqrt(1 + 4*T(x)^2)
and D(x) = cosh( 2*x*cosh(x*D(x)) ).
SPECIFIC VALUES.
T(1/3) = 0.396995956737823895057073833881324565170496359298875629...
T(1/4) = 0.272098438758403062037693234896743179247292418834110582...
T(1/5) = 0.210496129492378206205507948355083031094691532837329579...
T(1/6) = 0.172515307079869202329210004732936197729646250794708377...
T(1/10) = 0.101199443780546489307264980334019941975165460819500909...
PROG
(PARI) /* From T(x) = (1/2) * sinh( 2*x*cosh( x*sqrt(1 + 4*T(x)^2) ) ) */
{a(n) = my(T=x); for(i=0, n, T=truncate(T); T = (1/2) * sinh( 2*x*cosh(x*sqrt(1 + 4*T^2 + x*O(x^(2*i)) )) ));
(2*n+1)! * polcoeff(T, 2*n+1, x)}
for(n=0, 30, print1( a(n), ", "))
(PARI) /* From A370433 at k = 2 */
{a(n, k = 2) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n)));
for(i=1, 2*n,
C = cosh( x*cosh(k*x*C +Ox) );
S = sinh( x*cosh(k*x*sqrt(1 + S^2 +Ox)) );
D = cosh( k*x*cosh(x*D +Ox));
T = (1/k)*sinh( k*x*cosh(x*sqrt(1 + k^2*T^2 +Ox))); );
(2*n+1)! * polcoeff(T, 2*n+1, x)}
for(n=0, 30, print1( a(n), ", "))
CROSSREFS
Cf. A370433 (k = 2), A372811 (C(x)), A372812 (S(x)), A372813 (D(x)), A007106.
Sequence in context: A232454 A140638 A367868 * A299036 A374141 A112905
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2024
STATUS
approved