The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211214 Number of reduced Latin n-dimensional hypercubes of order 4; labeled n-ary loops of order 4 with fixed identity. 2
1, 1, 4, 64, 7132, 201538000, 432345572694417712, 3987683987354747642922773353963277968, 678469272874899582559986240285280710364867063489779510427038722229750276832 (list; graph; refs; listen; history; text; internal format)



The values are calculated recursively, based on the characterization by 2009. The number a(5) was found before (2001 and, independently, later works) by exhaustive computer-aided classification of the objects.


T. Ito, Creation Method of Table, Creation Apparatus, Creation Program and Program Storage Medium, U.S. Patent application 20040243621, Dec. 2, 2004.

D. S. Krotov, V. N. Potapov, On the reconstruction of N-quasigroups of order 4 and the upper bounds on their numbers, Proc. Conference devoted to the 90th anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, October 8-11, 2001), 2001, http://www.ict.nsc.ru/ws/Lyap2001/2363/

B. D. McKay, I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22:2 (2008) 719-736.


Table of n, a(n) for n=0..8.

D. S. Krotov, V. N. Potapov, n-Ary Quasigroups of Order 4, SIAM J. Discrete Math. 23:2 (2009), 561-570, arXiv: math/0701519.

V. N. Potapov, D. S. Krotov, On the number of n-ary quasigroups of finite order, Discrete Mathematics and Applications, 21:5-6 (2011), 575-586, arXiv:0912.5453.


a(n) = A211215(n)/(4*6^n).


# (Python)

N=12 # the maximum arity to calculate

J, K=[[[[]]]], [[[[]]]]

for n in range(1, N+1):

.J+=[[[]]] # create empty J[n][0]

.K+=[[[]]] # create empty K[n][0]

.for i in range(1, n):

..J[n]+=[[]] # create empty J[n][i]

..K[n]+=[[]]  # create empty K[n][i]

..if (i<=n-i):

...J[n][i] += J[n-i][i][:]

...K[n][i] += map(lambda K_: [K_[0]+1]+K_[1:], K[n-i][i])

..for j in range(i+1, n-i+1):

...J[n][i] += map(lambda J_: [i]+J_, J[n-i][j])

...K[n][i] += map(lambda K_: [1]+K_, K[n-i][j])

.J[n]+=[[[n]]] # create J[n][n]

.K[n]+=[[[1]]] # create K[n][n]

J = map(lambda Ji:sum(Ji, []), J); K = map(lambda Ji:sum(Ji, []), K) # merge groups

# now J[n] and K[n] represent a list of partitions of n into positive summands:

# n=J[n][i][0]*K[n][i][0]+J[n][i][1]*K[n][i][1]+J[n][i][2]*K[n][i][2]+...

# 0<J[n][i][0]<J[n][i][1]<J[n][i][2]<... -- summands; K[n][i][j]>0 -- multiplicities

map(lambda Ji:Ji.pop(), J); map(lambda Ki:Ki.pop(), K)  # remove the trivial 1-partitions


import math

F=map(lambda J1, K1, n:map(lambda J2, K2: reduce(lambda res, JK: res/JK, map(lambda J3, K3:math.factorial(K3)*math.factorial(J3)**K3, J2, K2), math.factorial(n)), J1, K1), J, K, range(N+1))

# F[n][i] is the number of partitions of an n-set that correspond to the partition J[n][i], K[n][i] of n.

La=map(lambda n:2L**(2**n-n-1), range(N+1))

Ras, Ra0, R_0, R_s, P_a, V, T = [0, 0L], [0, 0L], [0, 0L], [0, 0L], [0, 0L], [1, 1L], [4, 24L]

for n in range(2, N+1):

.V+=[0L]; T+=[0L]; P_a+=[0L]; Ras+=[0L]; Ra0+=[0L]; R_0+=[0L]; R_s+=[0L]

.for i in range(len(K[n])):

..R_0[n], Ra0[n], R_s[n], Ras[n] = map(lambda A, B, C :

...A[n] + reduce(lambda r, t:r*(B[J[n][i][t]]-C*A[J[n][i][t]])**K[n][i][t], range(len(K[n][i])), ((1-C)*P_a[sum(K[n][i])]+C)*F[n][i]),

...(R_0, Ra0, R_s, Ras), (V, La, V, La), (0, 0, 1, 1))

.R_0[n] *= 3

.P_a[n] = La[n] - Ra0[n] - 2*Ras[n]

.V[n] = 3*P_a[n] + R_0[n] + 4*R_s[n]

.T[n] = 4*(6**n)*V[n]

print "\n Reduced (A211214):", V

print "\n Total (A211215):", T


Cf. A000315, A098843, A100539, A132205.

Sequence in context: A348315 A053923 A326868 * A229867 A051191 A120581

Adjacent sequences:  A211211 A211212 A211213 * A211215 A211216 A211217




Denis S. Krotov and Vladimir N. Potapov, Apr 06 2012



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 03:04 EDT 2021. Contains 348099 sequences. (Running on oeis4.)