login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372651
a(n) is the product of the distinct nonzero quadratic residues of n.
3
1, 1, 1, 1, 4, 12, 8, 4, 28, 1080, 540, 36, 12960, 44352, 2160, 36, 1797120, 524160, 22619520, 2880, 1088640, 4790016000, 465813504, 6912, 5096577024, 8115883776000, 5477472000, 2419200, 267346759680000, 124104960000, 216218419200000, 244800, 143187264000
OFFSET
1,5
FORMULA
a(n) mod n = A232195(n).
a(n) = Product_{k=1..n} A046071(n,k).
PROG
(Python)
from sympy import prod
def a(n):
k, QS = 0, []
for i in range((n >> 1) + 1):
if k > 0: QS.append(k)
k += (i << 1) + 1
k %= n
return prod(set(QS))
print([a(n) for n in range(1, 34)])
(Python)
from math import prod
from sympy.ntheory.residue_ntheory import quadratic_residues
def A372651(n): return prod(r for r in quadratic_residues(n) if r) # Chai Wah Wu, May 30 2024
(PARI) a(n) = my(list=List()); for (i=1, n-1, if (issquare(Mod(i, n)), listput(list, i))); vecprod(Vec(list)); \\ Michel Marcus, May 28 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Darío Clavijo, May 27 2024
STATUS
approved