Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #35 May 30 2024 11:47:44
%S 1,1,1,1,4,12,8,4,28,1080,540,36,12960,44352,2160,36,1797120,524160,
%T 22619520,2880,1088640,4790016000,465813504,6912,5096577024,
%U 8115883776000,5477472000,2419200,267346759680000,124104960000,216218419200000,244800,143187264000
%N a(n) is the product of the distinct nonzero quadratic residues of n.
%F a(n) mod n = A232195(n).
%F a(n) = Product_{k=1..n} A046071(n,k).
%o (Python)
%o from sympy import prod
%o def a(n):
%o k, QS = 0,[]
%o for i in range((n >> 1) + 1):
%o if k > 0: QS.append(k)
%o k += (i << 1) + 1
%o k %= n
%o return prod(set(QS))
%o print([a(n) for n in range(1, 34)])
%o (Python)
%o from math import prod
%o from sympy.ntheory.residue_ntheory import quadratic_residues
%o def A372651(n): return prod(r for r in quadratic_residues(n) if r) # _Chai Wah Wu_, May 30 2024
%o (PARI) a(n) = my(list=List()); for (i=1, n-1, if (issquare(Mod(i, n)), listput(list, i))); vecprod(Vec(list)); \\ _Michel Marcus_, May 28 2024
%Y Cf. A046071, A105612, A165909, A230366, A232195.
%K nonn
%O 1,5
%A _DarĂo Clavijo_, May 27 2024