login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230366
a(n) = Sum_{k=1..floor(n/2)} (k^2 mod n).
3
0, 1, 1, 1, 5, 8, 7, 6, 12, 25, 22, 19, 39, 42, 35, 28, 68, 69, 76, 65, 91, 110, 92, 74, 125, 169, 144, 147, 203, 190, 186, 152, 242, 289, 245, 201, 333, 342, 286, 270, 410, 413, 430, 363, 420, 460, 423, 340, 490, 575, 578, 585, 689, 666, 605, 546, 760, 841
OFFSET
1,5
COMMENTS
a(26) and a(27) are both squares. Conjecture: the number of n such that a(n) and a(n+1) are both squares is infinite.
a(p = prime) == 0 (mod p) for p > 3.
MATHEMATICA
Table[Sum[Mod[k^2, n], {k, Floor[n/2]}], {n, 100}] (* T. D. Noe, Oct 22 2013 *)
Table[Sum[PowerMod[k, 2, n], {k, Floor[n/2]}], {n, 100}] (* Harvey P. Dale, Jul 03 2022 *)
PROG
(JavaScript)
for (i=1; i<50; i++) {
c=0;
for (j=1; j<=i/2; j++) c+=(j*j)%i;
document.write(c+", ");
}
(PARI) a(n)=sum(i=1, floor(n/2), (i*i)%n) \\ Ralf Stephan, Oct 19 2013
(Python)
def A230366(n): return sum(k**2%n for k in range(1, (n>>1)+1)) # Chai Wah Wu, Jun 02 2024
CROSSREFS
Cf. A048153.
Sequence in context: A165909 A334482 A243598 * A358361 A197415 A019845
KEYWORD
nonn
AUTHOR
Jon Perry, Oct 17 2013
STATUS
approved