OFFSET
1,2
COMMENTS
Let alpha be an algebraic integer and define a sequence of integers a(n) by the condition a(n) = max {integer d : alpha^n == 1 (mod d)}. Silverman shows that a(n) is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). For the present sequence we take alpha = 2 + i. For other examples see A230368, A235450 and (conjecturally) A082630.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
J. H. Silverman, Divisibility sequences and powers of algebraic integers, Documenta Mathematica, Extra Volume: John H. Coates' Sixtieth Birthday (2006) 711-727
FORMULA
a(n) = max {integer d : (2 + i)^n == 1 (mod d)}.
a(n) = gcd(((2 - i)^n + (2 + i)^n - 2)/2, i*((2 + i)^n - (2 - i)^n)/2).
As n -> inf, lim sup log(a(n))/n = 0.
MAPLE
seq( gcd( 1/2*((2 - I)^n + (2 + I)^n - 2), I/2*((2 + I)^n - (2 - I )^n) ), n = 1..80 );
MATHEMATICA
Table[GCD[((2-I)^n +(2+I)^n -2)/2, I*((2+I)^n -(2-I)^n)/2], {n, 0, 85}] (* G. C. Greubel, Mar 21 2019 *)
PROG
(PARI) {a(n) = gcd(((2-I)^n +(2+I)^n -2)/2, I*((2+I)^n -(2-I)^n)/2)}; \\ G. C. Greubel, Mar 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jan 10 2014
STATUS
approved