login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230369
A strong divisibility sequence associated with the algebraic integer 2 + i.
3
1, 2, 1, 8, 1, 2, 1, 48, 1, 2, 1, 104, 1, 2, 1, 1632, 1, 2, 1, 8, 1, 2, 1, 1872, 1, 2, 109, 232, 1, 1342, 1, 3264, 1, 2, 1, 3848, 149, 2, 1, 1968, 1, 2, 1, 712, 1, 2, 1, 445536, 1, 2, 1, 424, 1, 218, 1, 1392, 1, 2, 1, 69784, 1, 2, 1, 6528, 1, 2, 1, 8, 1, 2, 1, 15168816, 1, 298, 1, 8, 1, 2, 1, 66912, 109, 2
OFFSET
1,2
COMMENTS
Let alpha be an algebraic integer and define a sequence of integers a(n) by the condition a(n) = max {integer d : alpha^n == 1 (mod d)}. Silverman shows that a(n) is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). For the present sequence we take alpha = 2 + i. For other examples see A230368, A235450 and (conjecturally) A082630.
LINKS
J. H. Silverman, Divisibility sequences and powers of algebraic integers, Documenta Mathematica, Extra Volume: John H. Coates' Sixtieth Birthday (2006) 711-727
FORMULA
a(n) = max {integer d : (2 + i)^n == 1 (mod d)}.
a(n) = gcd(((2 - i)^n + (2 + i)^n - 2)/2, i*((2 + i)^n - (2 - i)^n)/2).
As n -> inf, lim sup log(a(n))/n = 0.
MAPLE
seq( gcd( 1/2*((2 - I)^n + (2 + I)^n - 2), I/2*((2 + I)^n - (2 - I )^n) ), n = 1..80 );
MATHEMATICA
Table[GCD[((2-I)^n +(2+I)^n -2)/2, I*((2+I)^n -(2-I)^n)/2], {n, 0, 85}] (* G. C. Greubel, Mar 21 2019 *)
PROG
(PARI) {a(n) = gcd(((2-I)^n +(2+I)^n -2)/2, I*((2+I)^n -(2-I)^n)/2)}; \\ G. C. Greubel, Mar 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jan 10 2014
STATUS
approved