login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372523
Triangle read by rows: T(n, k) is equal to n/k if k | n, else to the concatenation of A003988(n, k) = floor(n/k) and A051127(k, n) = n mod k.
1
1, 2, 1, 3, 11, 1, 4, 2, 11, 1, 5, 21, 12, 11, 1, 6, 3, 2, 12, 11, 1, 7, 31, 21, 13, 12, 11, 1, 8, 4, 22, 2, 13, 12, 11, 1, 9, 41, 3, 21, 14, 13, 12, 11, 1, 10, 5, 31, 22, 2, 14, 13, 12, 11, 1, 11, 51, 32, 23, 21, 15, 14, 13, 12, 11, 1, 12, 6, 4, 3, 22, 2, 15, 14, 13, 12, 11, 1
OFFSET
1,2
FORMULA
T(n, k) = floor(n/k)*10^(1+floor(log10(n mod k))) + (n mod k) if n is not divisible by k.
T(n, n) = 1.
T(n, 1) = n.
T(n, k) = 2*T(n-k, k) - T(n-2*k, k) for n >= 3*k.
T(n, k) = [x^n] x^k*(1 + (Sum_{i=1..k-1} (i + 10^(1+floor(log10(n mod k))))*x^i) - (Sum_{i=1..k-1} i*x^(k+i)))/(1 - x^k)^2.
EXAMPLE
The triangle begins:
1;
2, 1;
3, 11, 1;
4, 2, 11, 1;
5, 21, 12, 11, 1;
6, 3, 2, 12, 11, 1;
7, 31, 21, 13, 12, 11, 1;
...
MATHEMATICA
T[n_, k_]:=If[Divisible[n, k], n/k, FromDigits[Join[IntegerDigits[Floor[n/k]], IntegerDigits[Mod[n, k]]]]]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* or *)
T[n_, k_]:=Floor[n/k]10^IntegerLength[Mod[n, k]]+Mod[n, k]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* or *)
T[n_, k_]:=SeriesCoefficient[x^k(1+Sum[(i + 10^(1+Floor[Log10[Mod[n, k]]]))*x^i, {i, k-1}] - Sum[i*x^(k+i), {i, k-1}])/(1-x^k)^2, {x, 0, n}]; Table[T[n, k], {n, 12}, {k, n}]//Flatten
CROSSREFS
Cf. A000012 (right diagonal), A000027 (1st column).
Sequence in context: A203709 A270382 A340063 * A196371 A276116 A306993
KEYWORD
nonn,base,easy,look,tabl
AUTHOR
Stefano Spezia, May 04 2024
STATUS
approved