login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203709
E.g.f.: 2*Product_{n>=1} ((exp(x^n) + 1)/2).
3
2, 1, 3, 10, 55, 311, 2446, 19447, 196337, 2014777, 24828706, 311108051, 4507990477, 66719239237, 1112079627842, 18945126606421, 356368711926481, 6867187345103057, 143985206958508162, 3092256807348721807, 71426909592196938101, 1691486262041519369581
OFFSET
0,1
LINKS
EXAMPLE
E.g.f.: A(x) = 2 + x + 3*x^2/2! + 10*x^3/3! + 55*x^4/4! + 311*x^5/5! +...
where
A(x) = 2*(exp(x)+1)/2 * (exp(x^2)+1)/2 * (exp(x^3)+1)/2 * (exp(x^4)+1)/2 *...
The log of the e.g.f. begins:
log(A(x)/2) = (x/2)/(1-x^2) + 5*(x/2)^2/2! + 238*(x/2)^4/4! + 28816*(x/2)^6/6! + 6397168*(x/2)^8/8! + 2322439936*(x/2)^10/10! +...
MATHEMATICA
nmax = 25; Range[0, nmax]! * CoefficientList[Series[2*Product[1/(1 - Tanh[x^k/2]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 21 2016 *)
PROG
(PARI) {a(n)=n!*polcoeff(2*prod(k=1, n, (exp(x^k+x*O(x^n))+1)/2), n)}
CROSSREFS
Sequence in context: A192719 A270996 A366325 * A270382 A340063 A372523
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2012
STATUS
approved