login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366325
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)).
4
1, 2, -1, 3, -10, 36, -137, 543, -2219, 9285, -39587, 171369, -751236, 3328218, -14878455, 67030785, -304036170, 1387247580, -6363044315, 29323149825, -135700543190, 630375241380, -2938391049395, 13739779184085, -64430797069375, 302934667061301, -1427763630578197
OFFSET
0,2
FORMULA
G.f.: A(x) = -2*x*(1+x) / (1+x-sqrt((1+x)*(1+5*x))).
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(2*k-1,k) * binomial(n-2,n-k)/(2*k-1).
a(n) ~ -(-1)^n * 5^(n - 1/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 07 2023
From Peter Bala, Sep 10 2024: (Start)
a(n) = 1/(1 - n) * Sum_{k = 0..n} binomial(-n+k, k)*binomial(-n+k+1, n-k) for n not equal to 1. Cf. A007863.
a(n) = Sum_{k = 0..n-2} binomial(-n+k+1, k)*binomial(-n+k+1, n-k)/(-n+k+1) for n >= 2.
P-recursive: n*a(n) = - 3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2) with a(1) = 2 and a(2) = -1. (End)
MAPLE
a := proc(n) option remember; if n = 1 then 2 elif n = 2 then -1 else (-3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2))/n fi; end:
seq(a(n), n = 1..30); # Peter Bala, Sep 10 2024
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(n-2, n-k)/(2*k-1));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 07 2023
STATUS
approved