OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..350
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 16*x^3/3! + 104*x^4/4! + 696*x^5/5! +...
where the e.g.f. equals the product:
A(x) = (exp(2*x)+1)/2 * (exp(2*x^2)+1)/2 * (exp(2*x^3)+1)/2 * (exp(2*x^4)+1)/2 *...
The log of the e.g.f. begins:
log(A(x)) = x + 3*x^2/2! + x^3 + 34*x^4/4! + x^5 + 1096*x^6/6! + x^7 + 56848*x^8/8! + x^9 +...+ A203715(n)*x^n/n! +...
Note that the coefficients of the odd powers of x in log(A(x)) equals 1.
MATHEMATICA
nmax = 25; Range[0, nmax]! * CoefficientList[Series[Product[1/(1 - Tanh[x^k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 21 2016 *)
PROG
(PARI) {a(n)=n!*polcoeff(prod(k=1, n, (exp(2*x^k+x*O(x^n))+1)/2), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2012
STATUS
approved