The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203716 E.g.f.: Product_{n>=1} (exp(2*x^n) + 1)/2. 10
 1, 1, 4, 16, 104, 696, 6272, 57856, 652416, 7657600, 104244992, 1475430144, 23426373632, 387521615872, 7034561925120, 132850810138624, 2709375373672448, 57456525327335424, 1301169515685085184, 30573796812553584640, 760486440376336908288, 19600568102376899608576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..350 EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 16*x^3/3! + 104*x^4/4! + 696*x^5/5! +... where the e.g.f. equals the product: A(x) = (exp(2*x)+1)/2 * (exp(2*x^2)+1)/2 * (exp(2*x^3)+1)/2 * (exp(2*x^4)+1)/2 *... The log of the e.g.f. begins: log(A(x)) = x + 3*x^2/2! + x^3 + 34*x^4/4! + x^5 + 1096*x^6/6! + x^7 + 56848*x^8/8! + x^9 +...+ A203715(n)*x^n/n! +... Note that the coefficients of the odd powers of x in log(A(x)) equals 1. MATHEMATICA nmax = 25; Range[0, nmax]! * CoefficientList[Series[Product[1/(1 - Tanh[x^k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 21 2016 *) PROG (PARI) {a(n)=n!*polcoeff(prod(k=1, n, (exp(2*x^k+x*O(x^n))+1)/2), n)} CROSSREFS Cf. A203715 (log), A203709, A270664, A270665, A270666. Sequence in context: A094637 A332783 A332773 * A330537 A136793 A274889 Adjacent sequences:  A203713 A203714 A203715 * A203717 A203718 A203719 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 13:12 EDT 2022. Contains 356039 sequences. (Running on oeis4.)